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Fibrations not Functoriality

In classical category theory we study functors and presheaves with different
values. Examples are functors valued in sets

Fun(C°P, Set)
and functors valued in categories
Fun(C°P, Cat)

We want to take a similar approach in higher category theory, however, there
things become quite complicated. That is because in higher category theory
there is often not a unique notion of composition. Rather, for two maps, there
is a contractible space of maps. Thus defining functors are tricky as they need
a lot of coherence data. Therefore, we often take an alternative approach in
higher category theory, which means we use fibrations.
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So, the slogan is:

7 Fibrations not Functors”

Example 1.1. One example is the notion of a right fibration (which will be
discussed later). A classic example of a right fibration is the over category
C/. — C. Looking at the fiber we have



map e(d,c) —— C/,
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The fiber is exactly the value we associate to the representable functors. Thus,
we think of this right fibration as the representable right fibration.

Cartesian Fibrations

Our next goal is to study fibrations which model presheaves valued in higher
categories Cats,. Before I move on I should point out this has been studied
extensively by Lurie (Section 2.4 of [Lu09]) in the context of quasicategories. It
has also been studied by Riehl and Verity ([RV17]) in their model independent
framework of co-cosmoi and by de Brito using Segal objects ([dB16]).

Before we give any definition let us review the construction of complete Segal
spaces as introduced by Charles Rezk in [Re01]. Complete Segal spaces are a
model of higher categories. They come with a simplicial model structure, which
gives us efficient ways to study higher categories.

Category Functorial over €

Spaces = Fun(A°P,Set) = 8

Kan complexes (Kan)

Simplicial Spaces over € = s8¢

Right fibration (contravariant)

Simplicial Spaces = Fun(A°P,§) = s8
Reedy fibrant (Reedy)

Bisimplicial Spaces over € = ss8 /¢

Reedy right fibration (Reedy contravariant)

Simplicial Spaces = sS¢gs

Complete Segal Spaces (CSS)

Bisimplicial Spaces over = (558 /¢ )cart

Cartesian Fibrations (Cartesian)

Let us make this intuitive story given here precise and give concrete defini-
tions. The next definition is by Charles Rezk but also appears in [dB16].

Definition 2.1. Let € be a CSS. A map D — C is a right fibration if it is a
Reedy fibration and the following is a homotopy pullback
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in the Kan model structure.



Remark 2.2. This definition is quite non-intuitive. But it helps to see what
happens when the base is a point. In that case the map D; — Dy is an
equivalence. As D is a CSS this means D is a higher groupoid, so just a space.
Thus the fiber over any right fibration is just a space, which is exactly what we
expected.

Let’s generalize this

Definition 2.3. Let € be a CSS. A map of bisimplicial spaces R — C is a Reedy
right fibration if it is a bisimplicial Reedy fibration and it is a level-wise right
fibration, meaning that for each k the map Ry — C is a right fibration
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Remark 2.4. As expected a Reedy right fibration models presheaves valued in
Reedy fibrant simplicial spaces. This can be checked by looking at Reedy right
fibrations over the point.

Definition 2.5. A Reedy right fibration R — C is a Cartesian fibration if it

satisfies the

1. Segal Condition: The maps
Rk — Rl XRg +++ XRg le
are Reedy equivalences for k > 2.

2. Completeness Condition: The map
R?) X:RIXZRO:RIXLRD:RI Rl — :R'O
is a Reedy equivalence.

Remark 2.6. These two definitions come with a simplicial model structure on
the category ss§¢.

Why?

Instead of now giving various theorems about this definition of a Cartesian
fibration I will focus on reasons why it is interesting to study Cartesian fibrations
using this new perspective.

(1) Separating Functoriality from the Values of the Functor: The process we
described first makes our fibration into a functor valued in simplicial spaces and
then modifies the image accordingly. This brings several benefits just by itself.



I It can make the definition of a Cartesian fibration more intuitive. If we
understand right fibrations and complete Segal spaces, then this definition
is a straightforward combination of those two.

II It can be helpful in concrete computations. For example, when trying to
build a Cartesian fibration out of arbitrary maps, we can split the tasks
into more manageable pieces, namely one which makes a map into Reedy
right fibration and then one which makes Reedy right fibration into a
Cartesian fibration.

III Tt can be generalized to presheaves valued in other categories. In particu-
lar, we can model presheaves valued in Segal spaces just by dropping the
completeness condition from our Cartesian fibrations. Depending on need
we should also be able to model presheaves valued in other categories.

IV The level-wise nature allows us to generalize theorems about right fibrati-
ons to the Cartesian setting. For example in right fibrations we following
theorem

Theorem 3.1. A map of simplicial spaces D — & over C is a contrava-
riant equivalence if and only if for every object c € C the map

Gc/ XeD — Gc/ xXe &
is a diagonal Kan equivalence (the diagonal is a Kan equivalences).

Using the definitions above we can generalize that to following theorem

Theorem 3.2. A map of bisimplicial spaces D — € over C is a Cartesian
equivalence if and only if for every object ¢ € € the map

GC/ XeD — GC/ Xe &
is a diagonal CSS equivalence (the diagonal is a CSS equivalences).
(2) Representability: Having these tools we can define representable Reedy
right fibrations and representable Cartesian Fibrations.

Definition 3.3. Let € be a CSS. A simplicial object is a map z, : N(A°?) — C.
The collection of those form a CSS sC.

Theorem 3.4. For every simplicial object x4 we can define a Reedy right fi-
bration, denoted by C,,, that is level-wise equivalent to the representable right
fibration C, .

Remark 3.5. Looking at the fiber over ¢ we get the simplicial space

mape(y, o) == map,e(y, 1) % map e (y, T2) %

This definition comes with its own Yoneda lemma

Theorem 3.6. For two simplicial objects x4 and yo, there is an equivalence

Mape(€s,, € y.) —— mapyse(Te, y)



Remark 3.7. The Reedy right fibration might not be a Cartesian fibration. For
that we need extra conditions on the simplicial object.

Definition 3.8. Let C be a CSS with finite limits. A complete Segal object is a
simplicial object that satisfies the complete Segal condition.

Theorem 3.9. The Reedy right fibration X ,, is a Cartesian fibration if and
only if x4 is a CSO.

Obviously the Yoneda lemma still holds in this restricted case.

So, what is all of this good for?

I First of all it gives us an effective tool to study complete Segal objects.

As an example if I want to define an adjunction of complete Segal objects
I can just define it as following diagram

C/z, M C/z,

C— 5 ExF(l) «——¢C

where the middle map is a Cartesian and coCartesian fibration and the
squares are homotopy pullback squares.

II Moreover, it allows us to talk about ”representable functors” in a more
advanced way than was possible before. For example, if C is a CSS with
finite limits then the map ¢ : @) — @ is a Cartesian fibration (here I am
avoiding bisimplicial notation on purpose to simplify things). It represents
the functor

C? — Cate

cr— Cye

We also have a functor that ”forgets” all the additional categorical struc-
ture and just leaves us with the underlying space, which is called core.
Composing those I get a functor

C? — Cate — 8

C —— G/C — (G/C)C‘”e

So we get a functor into spaces. Representability of this functor is quite
interesting as it gives us a notion of an object classifier i.e. an object such
that

(€/e)"¢ ~ map(c, Q)

Notice in order to get here we simplified our functor to be able to represent
it in the first place. Having a definition of a representable Cartesian fibra-
tion we can talk about representability of the original Cartesian fibration.
As object classifiers play a prominent role in topos theory, this might have
interesting implications in the study of higher topoi.
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