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The roots of Topos theory: Elementary Toposes

Topos theory was first developed by Grothendieck and the Bourbaki school to
be able to expand the notion of a sheaves [GJ72]. Using this new approach they
were able to study algebro geometric objects from a new angle and prove new
results such as Weil conjecture by using etale cohomology.

Definition 1.1. A Grothendieck topos G is a left-exact localization of a category
of set valued presheaves on a small category. That means we have an adjunction

Fun(Cop, Set) G
a

i

where i is an embedding. a is often called the sheafification functor.

Example 1.2. Let X be a topological space. Then we can define the category
OpenX .

� Objects: Open subsets of X

� Morphisms: Inclusions of open sets

Using this we can define Fun(Openop
X , Set). Now let Shv(X) be the subcategory

whose objects are all functors F : Openop
X → Set such that if U = ∪iUi then

F (U) is the equalizer of the diagram

F (U)
∏
i

F (Ui)
∏
i,j

F (Ui ∩ Uj)

This gives us a Grothendieck topos and can be used to study the space X.

At the same time, from a more logical perspective Lavwere was working on a
axiomatization of the category of sets [La65]. It was at that time he worked with
Tierney and saw the connections between toposes as developed by Grothendieck
and axiomatized categories of sets. This lead to a development of a category
that was able to combine both concepts, an elementary topos [Ti73].
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Definition 1.3. An elementary topos is a locally cartesian closed category with
subobject classifier

Definition 1.4. A category C is Cartesian closed if it has finite products and
for every two object x, y ∈ C there is an object yx and map x × yx → y such
that we following equivalence holds

HomC(z × x, y) ∼= HomC(z, yx)

Definition 1.5. A category is locally Cartesian closed, if for every object c ∈ C

the slice category C/c is Cartesian closed. C/c is a category with

1. Objects:

d

c

2. Morphisms:

e d

c

Definition 1.6. A subobject classifier Ω is any object that represents the func-
tor Sub(−), the functor that takes each object to the set of subobjects.

Concretely,

Sub(A) = {mono maps with target A} = Hom(A,Ω)

Remark 1.7. We did not assume the existence of finite colimits because this
follows from the other axioms.

Example 1.8. Ignoring some details a set theory in the sense of ZFC can be
defined as an elementary topos which satisfies following conditions

1. It is generated by the final object 1.

2. It has a natural number object.

3. It satisfies the axiom of choice.

For more details see [MM12]

Using this definition Lavwere and Tierney were able to construct non-standard
categories of sets. In particular, they managed to show that ZFC is independent
of the continuum hypothesis using categorical models [Ti72].
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First Steps in Higher Categories: Higher Toposes

The roots of higher topos theory can be traced back to similar events that lead
to the rise of Grothendieck toposes in the first place. In particular, the strong
interest in derived algebraic geometry lead Jacob Lurie to do a thorough study
of higher toposes [Lu09]. After tremendous theoretical work we get following
very analogous definition for a higher topos.

Definition 2.1. A higher topos X is a left exact accessible localization of a
higher category of presheaves of spaces on a small higher category.

Fun(Cop, Spaces) X
a

i

Basically up until now we have following picture

Grothendieck Topos Elementary Topos

Higher Topos ?
p

This question remains what we want to put in that last spot. Intuitively it
should behave like some sort of push out of the given diagram above. This leads
to seriously consider a notion of a higher elementary topos.

First Step towards EHTs

The first thing we can do is to consider an analogous definition to the one given
for elementary toposes above.

Definition 3.1. (First try) An elementary higher topos is a locally Cartesian
category with subobject classifier.

Turns out this definition is terrible. The first reason that might come to mind
is that this category does not satisfy descent, which is definitely a condition we
would expect from any definition of a EHT (and is in particular satisfied by any
higher topos in the sense of Lurie). We need a far stronger conditions. The trick
is to not just accept subobject classifiers but rather to supercharge everything
as much possible and preserve as much information as we can.

Object Classifiers

This brings us to following reasonable question: Why did restrict our classi-
fying object to subobjects and didn’t go further. The answer is non-trivial
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automorphisms! As soon as we allow maps that are not mono we get non trivial
automorphisms. As our category only has hom sets that information cannot be
captured anymore.

However, in a higher category no such restriction exists as every higher
category gives us mapping spaces. Therefore we are able to actually classify all
maps over a certain object and not just subobjects.

Notation 4.1. Note that there are set theoretical issues with this that we will
amend later on. For now we will ignore such issues to focus on the main problem.

This gives us following definition

Definition 4.2. Let C be a higher category with finite limits. An object clas-
sifier in the higher category C is an object U that classifies the space valued
presheaf

(C/−)core : Cop → S

which takes an object c to the core of the over category (C/c)
core.

So for every object we have an equivalence of spaces

(C/c)
core ' mapC(c,U)

Remark 4.3. There is a way to make this definition more precise using the
language of right fibrations. That, however, would require a more thorough
explanation of the machinery.

Using the language of higher categories we were able to significantly streng-
then our classifying object, however we are still not done yet. In the definition
above the classifying object only recovers the core whereas we would prefer to be
able to preserve all of the categorical data. However, that is literally impossible
with one object as we are basically asking whether a single space can recover
all of the categorical data. In order to be able to do that we need simplicial
objects which satisfy appropriate conditions, i.e. complete Segal objects.

Complete Segal Objects

Before we delve into the world of complete Segal objects, let us step back for a
second. Where did that word suddenly come from? Complete Segal Spaces are
a model for higher categories developed by Charles Rezk [Re01]. Compared to
quasicategories it has the amazing property that it does not rely on any intrinsic
properties of spaces except for the fact that spaces have finite limits. Thus it has
the capacity to be generalized to any category that has finite limits. Concretely
this gives us following definition:

Definition 5.1. Let C be a higher category with finite limits. A complete Segal
object is a simplicial object X• : ∆op → C that satisfies following conditions:
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1. Segal Condition: The maps

Xn → X1 ×X0
...×X0

X1

are weak equivalences in C.

2. Completeness Conditions: The map

X0 → X3 ×(X1×X1) (X0 ×X0)

is a weak equivalence in C.

Remark 5.2. The first condition gives us a notion of composition. The second
tells us that homotopies are the same as weak equivalences.

We already know that each object y ∈ C gives rise to a representable functor
valued in spaces

Yy : Cop → Spaces

z 7→ mapC(z, y)

that takes an object z to map(z, y). Intuively we want to say something similar
holds in the case of those complete Segal objects. In other words, we want
a functor valued in higher categories that takes each z to the simplicial space
map(z, x•), which itself should be a complete Segal space and thus just a higher
category.

YX• : Cop → Cat∞

z 7→ mapC(z,X•)

where

mapC(z,X•) =

mapC(z,X0) mapC(z,X1) mapC(z,X2) · · ·

In practice this is quite tricky. As far as we can tell there is no obvious direct
way to do this. The proper way is by employing the language of fibrations. For
the purposes of this talk I will skip the details here, but to summarize we study
presheaves valued in spaces by using right fibrations, as already mentioned, and
we study presheaves valued in higher categories by using Cartesian fibrations.

Using the language of Cartesian fibrations, we can generalize things to the
following result:

Theorem 5.3. For each complete Segal object x• there is a Cartesian fibra-
tion Yx• that models the functor that takes a point y to the higher category
map(y, x•).

As is appropriate for any object worthy of being called representable we also
have a Yoneda Lemma:

Lemma 5.4. For any two complete Segal objects x• and y•, we have an equi-
valence

map(x•, y•) 'Map(Yx• ,Yy•)
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Having constructed such a Cartesian fibration, we can give following defini-
tion.

Definition 5.5. We say a presheaf valued in higher categories is representable
if it is equivalent to one of the form Yx• . In that case we say it is represented
by x•.

Having gone on this abstract detour we know have all the tools to expand
our definition. Before we give our definition, we recall that we have to adjust
for set theoretical issues.

Definition 5.6. We say U• is a object classifying complete Segal object closed
under finite colimits and limits if it represents a sub functor of the presheaf C/−
closed under limits and colimits. By that we mean there is an embedding

YU• ↪→ C/−

such that the image is closed under finite limits and colimits. Henceforth we call
such an object just an object classifier. Such objects are also called universes.

Definition of an Elementary Higher Topos

We finally have assembled all the tools to define an elementary higher topos.

Definition 6.1. We say a higher category C is an elementary higher topos if it
satisfies following conditions:

1. It has finite limits and colimits

2. It has a subobject classifier Ω

3. For every map f in C there exists an object classifier U• such that f is in
the image of YU• .

We have discussed before why the previous definition was not reasonable.
Why would this definition be reasonable? Let’s look at some of the evidence.

Theorem 6.2. If C is an EHT then C/c is also an EHT.

Remark 6.3. For reasons unknown the speaker this theorem is called the ”funda-
mental theorem of topos theory” in the case of elementary toposes. Regardless
of the precise reason this shows the importance of this theorem.

Proof. The case for finite limits and colimits are clear. The existence of a
subobject classifier follows from the same argument for elementary toposes (Ω×
c is a the subobject classifier). Finally the existence of object classifiers is
analogous to the argument for subobject classifiers (U•×c is an object classifier).

Theorem 6.4. Every elementary higher topos is locally Cartesian closed.
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Remark 6.5. This is very powerful as in the case of classical category theory we
had it as part of the conditions. Here it just follows from a stronger notion of
an object classifier.

Proof. It suffices to show it is Cartesian closed and the local part will follow from
the previous theorem. For that it suffices to show that the map −× y : E→ E

has a right adjoint. We will avoid the details but just to point out the idea.

The idea is that complete Segal objects are internal higher category objects
and so behave like higher categories. Thus they have a notion of ”objects” and
”mapping objects”. In particular, for every object x in C. I get a mapping
object mapU(y, x), which is just the pullback

mapU(y, x) U1

∗ U0 × U0

p

(x,y)

The claim is that this is the internal mapping object. Indeed, what we need is
a unit map x→ mapU(y, x× y) However, by the properties of object classifiers
such map is just a map x× y → x×x× y over x. However, there is one obvious
choice, namely (x0, y0) 7→ (x0, x0, y0), which gives us our unit map.

Proposition 6.6. Every elementary higher topos satisfies descent.

Proof. For a careful definition of descent take a look at work by Rezk [Re05].
One equivalent condition is that the functor (C/−)core takes colimits to limits.
That follows immediately from the fact that the fuctor is representable.

Examples

Having done all of this let us see some examples

Example 7.1. Let X be a higher topos in the sense of Lurie. Clearly, it has
finite limits and colimits. Also we can show that the sub object functor takes
colimits to limits, which by presentability implies it has to be representable.

According to Theorem 6.1.6.8 for each bounded local class S there exists
an object classifier US

0 . Now we can repeat the same procedure with X∆[n] as
this is still a topos. Thus for every S and every n we get an object classifier
US

n . These give us simplicial objects US
• , which classify the full subcategory of

X which has maps in S.

Finally, we notice that in a topos every map is in some bounded local class.
Thus we have shown that for every map there is an object classifier.
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Example 7.2. This example in particular implies that the category of spaces is
an elementary higher topos. In this case we can actually understand the object
classifier as a concrete object. Let U be an object classifier. As it is a space we
can understand it by looking at it’s points i.e. maps X : ∗ → U. As it classifies
spaces the data of the map X should just be some space. In order words we
should have following pullback diagram

X E

∗ U0

p

where E is the universal bundle. This basically implies that U0 is the core of
some subcategory of spaces that is closed under finite limits and colimits. And
the higher simplicial levels give us the higher categorical data of that chosen
subcategory.

So, in spaces each object classifier is just a subcategory thought of as a
simplicial space.

Where do we go from here?

Having introduced this new notion of an elementary higher topos what can we
do with it? There are two overall paths we can take from here. Study EHT for
their own sake and try to use them in other branches of mathematics. We will
suggest some possible questions in both directions.

For the sake of Elementary Higher Toposes:

1. Comparison to Other Definitions: In a recent blog post Mike Shulman has
suggested a definition for a elementary higher topos. On face value his
definition is different from mine as he assumes that is locally Cartesian
closed, but that we only have object classifiers that classify the core and
not the whole category. In light of the theorem above, my definition
does imply the definition of Shulman. There is strong evidence that the
opposite is also true but that needs some further study.

2. Colimits: In the case of elementary toposes we do not need to assume that
we have colimits as it follows from the other axioms. Thus one interesting
question is whether the same holds in the higher settings. In ongoing work
with Jonas Frey we think we have a proof that the case for an initial object
and coproducts directly generalizes. However, the case for pushouts seems
unclear and requires further efforts.

3. Univalence in EHTs: In [GK17] Gepner and Kock introduced a notion
of univalence in the context of locally Cartesian closed presentable higher
categories. Moreover, they show there is a relationship between univalent
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maps and object classifiers (which have to exist for presentability reasons).
In our context we take the existence of object classifiers as part of the
definition. Thus we can define univalent maps in EHT. The hope is that
we might have a similar classification result for univalent maps in an EHT.

For the sake of other areas of mathematics:

1. Non-Standard models of Spaces: One of the initial questions that made
people study elementary toposes was the desire to gain a better under-
standing of the category of sets and various ways it can be classifier. This
is not just for fun but can actually help us gain better understanding of
sets (recall [Ti72] where Tierney shows the independence of the continuum
hypothesis). The plan is that something similar should happen in the hig-
her categorical case. The hope is that by imposing the right condition we
can give a categorical classification of the category of spaces. That way
there is a chance we can realize what kind of properties hold for spaces.

In a similar vain we can use this approach to study categories which can
help us undestand the category of spaces.

2. Homotopy Type Theory: Homotopy type theory is very broadly speaking
a foundational approach to mathematics that takes homotopy theory as
one of it’s building blocks. So, a notion of homotopy is built into the basic
constructions, rather than in the context of set theory where we define
and impose homotopies. We do have some understanding of what models
for homotopy type theory are (see [KL12]), but definitely lack a complete
list of models. But models are important as they explicitly show us the
boundary of our theory and also give us an indicator on what kind of
things we can prove. One possible solution to an exhaustive list of models
is an elementary higher topos. In particular the object classifiers should
play the role of our univalent universes.
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