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The goal of this talk is to study functors for higher categories. We first review
functors for classical categories and show how we cannot just generalize our usual
approach to functors. At that point we start our discussion of fibrations and
show how they allow us to study functors valued in spaces and functors valued
in higher categories. All of the material in this talk can be found in more detail
in [Ral7a] and [Ral7b].

Categories and Functors

Category theory is based on the idea that it does not suffice to study objects
independent of each others, but rather the relations between objects have to be
considered as well. Applying that same logic to the study of categories leads
to the study of functors. In particular, there are two crucial categories Set and
Cat and so we regularly study functors

C — Set

C — Cat

Working with functors can be difficult, but is often still manageable as ca-
tegories only have mapping sets, and maps of sets are well understood.

Higher Categories and Higher Functors

In the world of higher categories, we study categories “up to homotopy”. In
particular, this means that for two maps, we do not have a strict composition,
but rather a space of compositions. Concretely, for three objects x,y,z € C we
have following diagram.



Comp(f,9) ——————— mape(z,y,2) ———— mape(z, 2)
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So, for any two composable maps f, g, there is a contractible space Comp(f, g)
of compositions. This means that managing functoriality is really difficult as
we have to keep track of all these spaces of compositions. There are two ways
to avoid this problem.

1. Strictify the higher category so that we have strict compositions. In other
words, we find a way to make those contractible spaces into points.

2. We find a completely different approach to functoriality that helps us avoid
this problem.

In the first approach, we convert the higher category into a category that
is enriched over spaces. That way we gain a strict notion of composition. The
other one is using the language of fibrations.

Fibrations

In the most general sense, a fibration is a map D — C that satisfies some
functoriality properties. Here is one of the first examples that arose in the
world of classical categories.

Definition 3.1. A functor p: D — C is called fibration fibered in sets if for any
map f:a — bin € and lift ¥’ € D, there exists a unique lift f':a’ — b in D.

This fibration plays the role of a functor
CP? — Set

In this analogy, the value of a point ¢ € € is the fiber p~!(c). The condition above
guarantees that for each map f : a — b, we get a map of sets p~1(b) — p~1(b).

There is a way to make this analogy above very precise, via the Grothendieck
construction.

Example 3.2. For each functor F' : CP — Set we get a category / F defined
e
as

e Objects: (¢,t) € € x F(c)



e Morphisms: A morphisms from (¢1,t1) to (ca,t2) is a map f : ¢ — ¢
such that F(f)(t2) = 1.

Unsurprisingly we have following fact

Theorem 3.3. The natural map / F — C is a category fibered in sets.
e

In fact every category fibered in sets can be written in such a format and so
the data of such fibration captures the notion of a contravariant functor valued
in sets.

The goal is to use the second approach to define functoriality rather than
prove it.

Right Fibrations

We want to replicate this approach at the level of higher categories. Let C be a
higher category. We want to study maps

C°? — Spaces

In order to be able to give concrete definitions we should now specify what
we mean by a higher category.
Definition 4.1. A complete Segal space is a simplicial space W : A% —
Spaces € s8 that satisfies following 3 conditions:

1. Reedy fibrancy

2. Segal condition

3. Completeness condition

Remark 4.2. We will not state here what these conditions are, but the one
thing that matters is that the conditions are defined as finite limits on simplicial
diagram.

We have following important fact about complete Segal spaces.

Theorem 4.3. A complete Segal space models a higher category. In this way
of thinking Wy plays the role of the space of objects, W1 plays the role of space
of morphisms, Ws is for compositions.

Having said that we can finally give our desired definition.

Definition 4.4. A right fibration p : R — W between complete Segal spaces is
a Reedy fibration such that the square



R14>R0

X1—>X0

is a homotopy pullback square of spaces, meaning that

Ry — X1 x Ry
Xo

is a trivial Kan fibration.
This is a direct generalization of the property of fibrations fibered in sets
stated above.

Let’s see two examples.

Example 4.5. If the base is X = F(0), then a right fibration R — F(0) is a
constant simplicial space. This is consistent with a functor out of a point just
being a space.

Example 4.6. If the base is X = F(1), the free arrow, then a right fibration
R — F(1) is the data of a diagram of the form.

Ry

Ro Rl

Thus we are recovering the notion of a contravariant functor out of the free
arrow, as the meaningful data is just the map of spaces Ry; — Ry.

Just using the definition above we get a lot of expected and important results.

Theorem 4.7. For a simplicial space X there is a model structure on s8,x,
called the contravariant model structure, which satisfies following conditions:

1. Fibrant object are right fibrations.
2. A map R — S of right fibrations over X is an equivalence if and only if
Ry x A[O] — SO X A[O]
Xo Xo

is a Kan equivalence.

3. Amap f: X =Y gives us a Quillen adjunction

fi
(ss/X)contra —*> (Ss/X)contra



which is a Quillen equivalence if f is a categorical equivalence.

Let’s see how we can use right fibrations in action.

Example 4.8. One classical fact for classical category theory is that for any
object ¢ € € there is a functor

V. :C% — 8Set
that takes an object d to Hom(d, c).

We want to generalize that to the realm of higher categories. For a higher
category C we want a functor

Y. : CP — Spaces

that takes a point d to the space map(d,c). Mapping spaces are well-defined,
so we can define the values, but functoriality is very difficult to deal with. Here
is where right fibrations are a very effective tool.

For each object we have a right fibration p : €, — C. In order to determine
which functor it models it suffices to check the fiber over a point

map(d,c) ——— C/,

|

So, we can think of the over-category projection C,, — € as the “representable
right fibration”.

Cartesian Fibrations

Until now we have found an effective way to model presheaves valued in spaces.
But how about functors
C? — Cateo = CSS?

W want to find a notion of fibration that models functors valued in complete
Segal spaces. In order to get there we first think of the analogous situation with
functors. A functors F' : C°%? — s8 is really a simplicial object in functors
F : C? — 8§ But we know how to model functors valued in spaces using
fibrations, which gives us a clear approach.



Category Functorial over €
Spaces = Fun(A°P Set) = § Simplicial Spaces over € = s8¢
Kan complexes (Kan) Right fibration (contravariant)
Simplicial Spaces = Fun(A°P,§) = s8 Bisimplicial Spaces over € = 538 /¢
Reedy fibrant (Reedy) Reedy right fibration (Reedy contravariant)
Simplicial Spaces = sScgs Bisimplicial Spaces over = (558 /¢)cart
Complete Segal Spaces (CSS) Cartesian Fibrations (Cartesian)

Using this intuition as a guide we get following definition.

Definition 5.1. Let X be a simplicial and C — X be a map of bisimplicial
spaces. C'is a Cartesian fibration over X if it satisfies following three conditions:

1. Reedy right fibration:

2
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2. Segal condition

3. Completeness condition

Using the definition above we can get very similar results to the previous
ones.

In particular we can get a new model structure for Cartesian fibrations

Theorem 5.2. Let X be a simplicial space. There is a model structure on
588 x, called the Cartesian model structure such that

1. Fibrant objects are Cartesian fibrations C' — X.

2. Amap f: X =Y gives us a Quillen adjunction

Ji
(ss/X)Cart E—

<f—* (Ss/X)Cart

which is a Quillen equivalence if f is a categorical equivalence.
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