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The goal of this talk is to talk about recent paper titled Thom spectra, higher
THH and tensors in ∞-categories with Bruno Stonek and Gabriel Valenzuela
with the goal of reworking some concepts related to THH computations of Thom
spectra.

1. What’s THH?

2. Why THH?

3. Why a new Approach towards THH?

4. Tensors for ∞-Categories

5. THH of Thom Spectra Revisited

6. Moving beyond Thom Spectra

The goal of this talk is to present an ∞-categorical approach to computing
THH of Thom spectra.

What’s THH?

Before we go on to THH let us recall the classical version, namely HH.

Definition 1.1. Let A be a commutative k-algebra (k a ring). The Hochschild
complex is a simplicial abelian group defined as

A A⊗k A A⊗k A⊗k A · · ·

with

di(a0 ⊗ ...⊗ an) =

{
a0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ an if i < n

ana0 ⊗ ...⊗ an−1 if i = n

and
si(a0 ⊗ ...⊗ an) = a0 ⊗ ...⊗ ai ⊗ 1⊗ ai+1 ⊗ ...⊗ an

The Hochschild homology HH(A) is the homology of this complex.
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We want to generalize this construction to the world of homotopy theory. A
first generalization is due to Bökstedt, using a very technical approach, due to
the fact that he didn’t have a good symmetric monoidal structure for spectra
[Bo85]. A construction analogous to the one above, however, can be found in
[EKMM95], where the authors give a good symmetric monoidal structre for
spectra and then give following definition for THH.

Definition 1.2. [EKMM95] Let A be an E∞-R-algebra. Then we can define a
simplicial E∞-R-algebra

A A ∧R A A ∧R A ∧R A · · ·

We define the topological Hochschild homology E∞-R-algebra THHR(A) as the
geometric realization of this simplicial object.

Why THH?

Why should homotopy theorists care about THH? The most important answer
is algebraic K-theory. Algberaic K-theory contains a lot of fascinating infor-
mation and relates to all kinds of topics in homotopy theory. However, it is
notoriously difficult to compute. For example we have following classical result
by Barrett-Priddy-Quillen.

Theorem 2.1. The algebraic K-theory of finite pointed sets is the sphere spec-
trum.

However, we can use THH to give a reasonable approximation of K. Con-
cretely we have a diagram of the form.

K TC

THH

Cyclotomic Trace

Dennis Trace

An important result by Dundas, Goodwillie and McCarthy [DGM12] studies
the cyclotomic trace (in the connective case) and thus gives us a good under-
standing of the difference between K and TC, but TC is defined by using
cyclotomic structure of THH. Thus the computation of THH is a good first
step towards a successful computation of K.

Why a new approach towards THH?

In order to understand why it is valuable to have a modern treatment of THH,
we will review work by Schlichtkrull [Sc11]. In his paper “Higher Topological
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Hochschild Homology of Thom Spectra” he proves the following theorem (using
more modern language).

Theorem 3.1. Let f : G → BGl1(S) be a map of E∞-groups with M(f) the
associated Thom spectrum. Then we have an equivalence of E∞-rings

THH(M(f)) 'Mf ∧ S[BG].

While trying to prove this result Schlichtkrull first points to some very intu-
itive way to prove it using a simple splitting of an E∞-space. However, he then
points out that he cannot translate his intuition into an actual proof, because
the construction would not interact well with the model structure he is using.
In particular, the constructions do not preserve cofibrancy. Thus he embarks
on a very technical journey to get the desired result.

This is an excellent example where the theory of model categories, which in
other places can be quite helpful, is actually becoming a burden. This is why
it’s useful to take a new approach to these results with the outcome that we can
make our initial intuition into an actual proof.

So, how can we generalize our study of THH? The first step is to realize an
alternative definition of THH for E∞-ring spectra.

Theorem 3.2. [MSV97] Let M be an E∞-ring. Then we have an equivalence

THH(M) ' S1 ⊗M.

Here, ⊗ is the tensor product of spaces over E∞-rings. Thus a good way
forward is to carefully study the functor X ⊗− for arbitrary spaces X. This is
consistent with work of Schlichtkrull, as he actually uses his technical approach
to prove something about X ⊗M(f), which then reduces to the case of THH
with X = S1.

Tensors for ∞-Categories

We will now take another look at THH from the perspective of ∞-categories
and tensors. Thus, we need to review some concepts about ∞-categories

An∞-category, also called quasi-category, is a simplicial set that satisfies an
inner horn-lifting condition that gives it a homotopical notion of composition
[Lu09]. All classical categorical concepts, such as adjunctions and limits, have
been generalized to the setting of ∞-categories. However, there are certain
stronger results that only hold for ∞-categories.

We want to understand how ∞-categories are tensored over each other and
we will make an analogy to algebra.
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Concept Algebra Categories Higher Categories
Object Set Category ∞-Category

Structured Object Abelian Group Cocomplete Category + accessible Cocomplete ∞-Category + accessible
= Locally Presentable Categories = Presentable ∞-Categories

Morphism Group Homomorphism Colimit Preserving Functor Colimit Preserving Functor
Symmetric Monoidal Hom(G⊗H,K) = FunL(C⊗D,E) = FunL(C⊗D,E) =

BiLin(G×H,K) FunL,L(C×D,E) FunL,L(C×D,E)
Unit = Free Object Z⊗A ∼= A Set⊗ C ' C S⊗ C ' C

Monoid Object Commutative Ring Symmetric Monoidal Category Symmetric Monoidal Category
Unit Multiplicative Z⊗ Z ∼= Z Set⊗ Set ' Set S⊗ S ' S

−×− : Z× Z→ Z −×− =
∐
−
− : Set× Set→ Set −×− = colim

(−)
(−) : S× S→ S

Modules R⊗M →M R⊗ C→ C R⊗ C→ C

Module over Unit −×− : Z×A→ A
∐
−
− : Set× C→ C colim

(−)
(−) : S× C→ C

(n, a) 7→ na (S, T ) 7→
∐
S

c = (X,Y ) 7→ colim
X
{c} =

colim(S → ∗ {c}−−→ C) colim(X → ∗ {c}−−→ C)
A k-VS char(k) = 0↔ C is pointed ↔ C is stable ↔

Canonical Module
A× Z A

A×Q

C× Set C

C× Set∗

C× S C

C× Sp

Here the right hand column is due to work by [GGN16].

Remark 4.1. We want to focus on the category GrpE∞
(S). Then we have fol-

lowing diagram

S×GrpE∞
(S)

S∗ ×GrpE∞
(S) GrpE∞

(S)

GrpE∞
(S)×GrpE∞

(S)

−⊗−
(−)+×id

−�−

F×id
−�−

This in particular implies that for any pointed space X we have

X �G ' FX �G ' Ω∞(Σ∞X ∧B∞G)

where FX is the free E∞-group on the pointed space X.

We can use compatiblity of tensors in GrpE∞
(S) to prove following splitting

theorem for E∞-groups.

Proposition 4.2 (R-Stonek-Valenzuela). Let G be a E∞-group. Then for any
pointed space X the cofiber sequence
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{∗}+ X+ X

gives us an equivalence
X ⊗G ' G× (X �G)

Remark 4.3. The induced map from X ⊗G to G is is exactly ∗ ⊗G : X ⊗G→
∗ ⊗ G ∼= G and is a generalization of the composition map. In fact if X = S0,
then ∗ ⊗ G = µ : G × G → G. So, we can think of this equivalence as a
generalization of the shear map

(µ, π2) : G×G→ G×G

Thom Spectra and their Tensors

In order to compute THH of Thom spectra, we first have to define Thom spectra
in the ∞-setting. The modern approach is primarily due to Ando, Blumberg,
Gepner, Hopkins, Rezk and Antoĺın-Camarena, Barthel [ABGHR14, AB19].

How do we get a modern approach to Thom spectra? Let R be an E∞-ring
spectrum. The Thom construction assigns to each rank 1 (invertible) R-bundle
p : E → B an R-module M(p). The key realization is that we can classify each
each bundle over a space X as a map X → BGL1R, as BGL1 is the classifying
space of rank 1 R-bundles. Thus we can think of the Thom construction as a
functor

M : S/BGL1R → ModR

and this functor preserves colimits. Using ∞-categorical machinery we know
that any colimit preserving functor out of S/BGL1R is uniquely determined by
its value on ∗ → BGL1R. This map classifies the trivial bundle R→ ∗ and the
Thom construction for the trivial bundle over the point is just the R-module
R itself, which means the Thom construction restricted to BGL1R is just the
inclusion functor. This complete determines M as a left Kan extension

BGL1R ModR

S/BGL1R

M

which we can describe explicitly as

M(f) = colim(G
f−−→ BGL1R ↪→ ModR).

We will use a slight generalization of this expression above.

Definition 5.1. Let R be a E∞-ring spectrum. We define the Picard space,
Pic(R), to be the underlying maximal ∞-groupoid of invertible R-modules.
Notice ModR has a symmetric monoidal structure and thus Pic(R) is an E∞-
group.
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Concretely Pic(R) ' π0(R) × BGL1(R) and we can think of BGL1(R) as
the connected component of the identity element of the E∞-group Pic(R).

Definition 5.2. Let G be a group-like E∞-space and f : G → Pic(R) be a
map of E∞-spaces. We define the Thom spectrum of f , M(f) as the following
colimit

M(f) = colim(G
f−−→ Pic(R) ↪→ ModR).

1. Here we are thinking of the space G as an ∞-category in which every
morphism is invertible, also called ∞-groupoid.

2. Although M(f) takes values in ModR but it actually has the structure of
a E∞-R-algebra as long as the map f : G→ Pic(R) is E∞. We can define
M(f) for more general maps, however, we want to focus on the case where
the resulting object M(f) is an E∞-R-algebra.

3. M(−) gives us a symmetric monoidal functor

M : GrpE∞
(S)/Pic(R) → CAlgR

This means that for any two E∞ maps f : G → Pic(R) and g : H →
Pic(R) we have an equivalence

M(G×H f×g−−−→ Pic(R)×Pic(R)
µ−→ Pic(R)) 'M(f : G→ Pic(R))∧RM(g : G→ Pic(R))

So, in particular, if f = g we get

Mf∧RMf 'M(G×G f×f−−−→ Pic(R)×Pic(R)
µ−→ Pic(R)) 'M(G×G µ−→ G

f−→ Pic(R))

Example 5.3. Let f : G→ Pic(R) be the trivial map, then M(f) = S[G] ∧R.

This last example suggests to us that we should think of a Thom spectrum
has a “twisting” of a suspension spectrum. The more complicated the map f is
the more we are twisting our suspension spectrum.

THH of Thom Spectra Revisited

Having defined M(f), we now want to study X ⊗M(f) for some space X.

Theorem 6.1 (R-Stonek-Valenzuela). Suppose f : G→ Pic(R) is an E∞-map
and X is pointed. There is an equivalence of E∞-R-algebras.

X ⊗RMf 'Mf ∧ S[X �G].

Proof. Here is an idea of the proof. We get an equivalence of E∞-R-algebras
using the universal property of M(f).

X ⊗RMf 'M(X ⊗G f(idX⊗∗)−−−−−−→ Pic(R))

6



But we also have X ⊗G ' G× (X �G), so the above is equivalent to

M(G× (X �G)
fπ1−−→ Pic(R)) 'M(f) ∧RM(X �G ∗−→ Pic(R)) '

Mf ∧R (R ∧ S[X �G]) 'Mf ∧ S[X �G]

where in the first equivalence we used the fact that M is symmetric monoidal

In particular then we have following corollary.

Corollary 6.2. Suppose G is an E∞-group. Then there is an equivalence of
E∞-R-algebras

THHR(Mf) = S1 ⊗RMf 'Mf ∧ S[BG].

Here is another corollary of the proof.

Corollary 6.3. Suppose G is an E∞-group. Then there is an equivalence of
E∞-R-algebras

Mf ∧RMf ' S0 ⊗Mf 'Mf ∧ S[G].

This equivalence is commonly known as the Thom isomorphism [Ma79]. We
can use this result as a guide to see why our result holds in the first place.
The classical proof of the Thom isomorphism theorem goes as follows. We have
following diagram of E∞-spaces:

G×G G×G

G

g:(x,y)7→(xy,y)

'

µ π1

where the map at the top g is an equivalence (with inverse (x, y) 7→ (xy−1, y).
Thus we get an equivalence

M(g) : M(G×G fµ−−→ Pic(R))
'−→M(G×G fπ1−−→ Pic(R))

which reduces to an equivalence Mf ∧RMf 'Mf ∧R (R ∧ S[G]).

The construction that we just presented makes use of the fact that the
composition maps G × G → G is simply the universal map of the coproduct
diagram

G G×G G

G

ι1

idG
µ

ι2

idG
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The map ∗ ⊗ id : X ⊗ G → G satisfies the exact same universal property

for the diagram X
{G}−−→ GrpE∞

(S). So, we can think of it as gathering all the
essential information at one specific point via a generalization of the product,
from where we can use a projection map, which we can capture in a diagram.

X ⊗G G× (X �G)

G

'

∗⊗idG π1

and we can literally recover the original diagram simply by using X = S0.

Moving beyond Thom Spectra

Having results for Thom spectra is nice, but obviously not every spectrum is
a Thom spectrum and so we would like to generalize our computation. One
prominent examples is KU , we know that KU ' S[K(Z, 2)](x−1), where x ∈
π2S[K(Z, 2)]. Clearly S[K(Z, 2)] is a Thom spectrum, so our next goal is to
show that results are preserved after we invert an element.

Theorem 7.1 (R-Stonek-Valenzuela). Let X be a connected pointed space. Let
R be an E∞-ring spectrum and x ∈ π∗(R). Then we have an equivalence

(X ⊗R)[x−1] ' (X ⊗R) ∧R R[x−1]
'−→ X ⊗R[x−1]

In fact this theorem is a special case of a more general theorem about étale
maps of which maps of the form R→ R[x−1] are an important example. Com-
bining this with previous results we get following.

Theorem 7.2. Let f : G → Pic(R) be a map of grouplike E∞-spaces and
x ∈ π∗(Mf). Let X be a connected pointed space. Then

X ⊗ (Mf [x−1]) 'Mf [x−1] ∧ S[X �G]

In particular we get.

Corollary 7.3.

X ⊗ (S[G][x−1]) ' S[G][x−1] ∧ S[X �G]

Example 7.4. We can now apply this result to KU to deduce that for any
pointed connected space X we have

X ⊗KU ' KU ∧ S[X �K(Z, 2)]

So, in particular
THH(KU) ' KU ∧ S[BK(Z, 2)]

This last result was actually the starting point of this whole project. THH(KU)
was also computed by Bruno Stonek in his thesis using model categorical meth-
ods from [EKMM95].
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