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Topological field theories arise when we want to assign algebraic invariants
to manifolds in an cobordism invariant way. In order to make sense of that we
will discuss following topics

1. Cobordism and Cobordims invariants

2. Topological Field Theories (TFTs) and some basic facts about TFTs

3. Low Dimensional Examples

4. Extended Locality

I should note all of this material comes from talks that Dan Freed gave in
the conference ”Topological and Geometric Methods in QFT” in Montana State
University ([Fr17]) and notes by by Carqueville and Runkel ([CR17]).

Cobordism

A bordism can be thought of as a ”homotopy of manifolds” and was initially
introduced by Poincare.

Definition 1.1. Let M1 and M2 be two n-dimensional manifolds. A bordism
from M1 to M2 is a tuple (W,p, ϕ1, ϕ2), where W is an n + 1-dimensional
manifold such that ∂W = M1

∐
M2, p : ∂W → {0, 1} is a map and ϕ1 and ϕ2

are embeddings
ϕ1 : [0, 1)×M1 →W

ϕ2 : (−1, 0]×M2 →W

This definition gives us an equivalence relation.

Definition 1.2. We say two n dimensional manifolds M1, M2 are bordant if
there is a a bordism between them.

Definition 1.3. Let Ωd be the set of bordism equivalence classes of d-dimensional
manifolds.
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Turns out this set is nice. It’s an abelian group.

Proposition 1.4. Ωd is an abelian group.

Proof. The operation is disjoint union. The identity is the empty manifold. The
inverse of each manifold is itself.

Remark 1.5. We can study bordisms of manifolds that have extra structure.
In particular, we can talk about oriented bordisms between oriented manifolds.
The resulting group is denoted by Ωd(SO). We can do similar things for spin
manifolds or manifolds with a complex structure.

Having all of this we can finally define bordism invariants

Definition 1.6. A classical bordism invariant is a group homomorphism from
Ωd to Z.

In other words it assign algebraic data to each bordism class. There are
various interesting examples of such.

Example 1.7. 1. Signature: An invariant of a 4d dimensional oriented ma-
nifolds

Ω4d(SO)→ Z

2. Â-genus: An invariant of 2d dimensional spin manifolds

Ω2d(Spin)→ Z

3. Todd Genus: An invariant of manifolds with complex structure.

Todd : Ω2k(U)→ Z

Remark 1.8. Some interesting algebraic invariants do not respect bordisms. An
important example of that is the Euler characteristic. It only works if we think
of it as a map to Z/2.

This is all nice and good, but there is something missing. The algebraic
invariant cannot see how two manifolds are bordant, but just the fact that they
are. All the equivalence information is inevitably lost. Thus the goal is to add
more algberaic data to be able to preserve that information. This leads to the
concept of categorification.

Topological Field Theories (TFTs)

In order to be able to preserve the information of equivalences we need to
generalize our constructions from sets to categories. This leads to following
definition:

Definition 2.1. A bordism category Bordn,n−1 is the symmetric monoidal ca-
tegory defined as follows
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Obj Objects are n− 1 dimensional manifolds

Mor Morphisms Hom(M1,M2) are diffeomorphism classes of bordisms from
M1 to M2. In particular, composition is by gluing bordisms and the
identity is [0, 1]×M

SMon The symmetric monoidal product is disjoint union. The identity is the
empty manifold.

This is the proper categorification of Ωd. As before, we can adjust the cate-
gory if we want to study manifolds with structure. Now what is the categorifica-
tion of the integers? Turns out it is Vector spaces. We will take complex vector
spaces here. This category is symmetric monoidal with the tensor product.

Definition 2.2. A topological field theory (TFT) is a symmetric monoidal func-
tor

F : Bordn,n−1 → V ectC

What can we say about this TFTs just by looking at the definition?

(1) We have F (∅) = C as a symmetric monoidal functors preserve the unit.
In particular,

Hom(∅, ∅) = Diffeomorphism classes of closed n-dimensional manifolds

is mapped to Hom(C,C) = C. Thus, it assigns a complex number to each
diffeomorphism class of closed n-dimensional manifolds.

(2) Every object in Bordn,n−1 is dualizable.

Definition 2.3. An object M is dualizable if there is an object (dual) M̄ and
maps

uM : ∅ →M
∐

M̄

cM : M
∐

M̄ → ∅

such that cm and uM satisfy some reasonable commutativity conditions.

This is clearly true in Bordn,n−1 as we can see from the picture that every
manifold is a dual to itself. This means that F (M) is dualizable as well. But in
the world of vector spaces a dualizable objects are exactly the finite dimensional
vector spaces. Thus every TFT actually maps into finite dimensional vector
spaces.

Now that we have a working definition. Let’s see some examples.

Low-Dimensional Examples

Let us see what we get if we look at low n. Here we will focus on TFTs on
orientable manifolds.
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(Dimension 1): Every oriented 0 manifold is a disjoint union of points each
of which has a given orientation. Thus if I know where I map one positively
oriented point, then I know what happens to everything else. The negative
oriented point simply maps to the dual and the disjoint unions to the tensor
product.

Moreover, there are no relations that prevent us from picking any finite
dimensional vector space we like. Thus we get

1, 0 oriented TFTs = finite dimensional vector spaces.

That wasn’t that exciting so let’s move on.

(Dimension 2): Every oriented 1 manifold is a disjoint union of circles. Thus
we might expect a result similar to the one above, however, it turns out this is
not true. Because of the added dimension there are now relations which did not
exist before.

The algebraic object we need is a Frobenius algebra.

Definition 3.1. A Frobenius algebra is a a vector space A such that

1. it has a associative unital algebra structure

2. it has a coassociative counital coalgebra structure

3. these two structures interace well with each other.

Having this definition the result should be the following

Theorem 3.2. There is an equivalence between 2 dimensional TFTs and com-
mutative Frobenius algebras.

For the relevant pictures see Page 27 of [CR17].

Extended Locality: How Higher Categories enter
the Picture

Field theories can be used to study manifolds. However the higher dimensional
the manifold is, the harder we can study it using field theories. We would rather
prefer to have more information.

Let me give one concrete example where this occurs.

We already mentioned that in Bordn,n−1 we get a complex number F (X)
for each n-dimensional manifold X. If we cut that manifold X along a n − 1
dimensional sub manifold Y , we get two pieces X1, X2. Which gives us two
bordisms, from ∅ to Y and from Y to ∅. This means we get two maps

F (X1) : F (Y )→ C
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F (X2) : C→ F (Y )

If we fix a basis e1, ..., en for F (Y ) and a dual basis f1, ..., fn then we can write
those maps explicitly as

F (X1) =
∑

aiei

F (X1) =
∑

bifi

and as
F (X) = F (X1) ◦ F (X2)

we must have
F (X) =

∑
aibi

That way we can compute higher dimensional information using lower dimensi-
onal pieces and gluing them.

We want to do something similar for an n − 1 dimensional manifold M .
However, the previous approach doesn’t exactly work. First of all the outcome
has to be a vector space and not a number. If we just tried, then first we would
cut M along a n− 2 dimensional manifold N to get two pieces M1 and M2. By
analogy we get maps

F (M1) = ⊕Vici

F (M2) = ⊕Widi

where Vi and Wi are now vector spaces. When we glue things then we should
get

F (M) = ⊕Vi ⊗Wi

But here is the problem. What are those ci and di? They should be invariants
of the n− 2 dimensional manifold N we cut along. But our field theory cannot
see n− 2 dimensional manifolds.

The correct approach then is to define a new extended field theory Bordn,n−1,n−2.
That has objects n−2-dimensional manifolds, maps bordisms of n−2-dimensional
manifolds and then 2-maps diffeomorphism classes of bordism of bordisms of
n − 2-dimensional manifolds. This object cannot be studied by just using a
category anymore as the mappings have far more information than a simple set.
For that reason we need to resort to higher categorical ideas.
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