THH and Shadows of Bicategories

Nima Rasekh joint with Kathryn Hess

École Polytechnique Fédérale de Lausanne

November 22nd, 2021

What's this talk about?

- Goal of this talk is to understand connection between topological Hochschild homology and shadows.
- In order to do that we review the relevant concepts.
- If time permits we will look applications to Morita invariance and possible further applications.
- For more details see the paper: *Shadows are Bicategorical Traces* (arXiv:2109.02144).

Hochschild Homology

Let A be an associative unital algebra over a ring k and M an (A, A)-bimodule. Then Hochschild homology $HH_{\bullet}(M, A)$ is defined as the homology of the complex

$$M \Longleftrightarrow M \otimes_k A \Longleftrightarrow M \otimes_k A \otimes_k A \Longleftrightarrow \cdots$$

with

$$d_i(m \otimes ... \otimes a_{n-1} \otimes a_n) = \begin{cases} m \otimes ... \otimes a_i a_{i+1} \otimes ... \otimes a_n & \text{if } i < n \\ a_n m \otimes ... \otimes a_{n-1} & \text{if } i = n \end{cases}$$

and

$$s_i(m \otimes ... \otimes a_n) = m \otimes ... \otimes a_i \otimes 1 \otimes a_{i+1} \otimes ... \otimes a_n$$

Simplicial Abelian Groups are Complexes

We can translate the simplicial abelian group to a complex by adding with alternating signs:

$$M \stackrel{a_0m-ma_0}{\longleftarrow} M \otimes_k A \stackrel{(ma_0,a_1)-(m,a_0a_1)+(a_1m,a_0)}{\longleftarrow} M \otimes_k A \otimes_k A \longleftarrow \dots$$

Simplicial Abelian Groups are Complexes

We can translate the simplicial abelian group to a complex by adding with alternating signs:

$$M \xleftarrow{a_0m-ma_0} M \otimes_k A \xleftarrow{(ma_0,a_1)-(m,a_0a_1)+(a_1m,a_0)} M \otimes_k A \otimes_k A \longleftarrow ...$$

In particular:

$$HH_0(M,A) = M/[M,A]$$

Hochschild Homology vs. Tensor

AMB BNC
$$\sim$$
 AMOBNC $=$ \sim M×N/ \sim (mb,n) \sim (m,bn)

AMA \sim HH₀(M, A) = M/ \sim am \sim max

ABB BNC \sim AH₀(M, A)

HH₀(M, A)

HH₀(M, A)

Why Hochschild Homology in Homotopy Theory?

If A is commutative then Hochschild homology recovers
Kähler differentials of the corresponding variety and hence
Hochschild homology has been used as a generalization to the
non-commutative setting (Connes).

Why Hochschild Homology in Homotopy Theory?

- If A is commutative then Hochschild homology recovers
 Kähler differentials of the corresponding variety and hence
 Hochschild homology has been used as a generalization to the
 non-commutative setting (Connes).
- It became an object of interest in homotopy theory via the Dennis trace map from algebraic K-theory.
- This motivated a homotopical generalization of Hochschild homology to topological Hochschild homology with a generalization of the trace, by Bökstedt and EKMM.

Topological Hochschild Homology

Let A be a ring spectrum over k and M an (A, A)-bimodule over A. Then topological Hochschild homology $\mathrm{THH}(M, A)$ is defined as the spectrum

$$THH(M, A) =$$

$$|M \iff M \wedge_k A \iff M \wedge_k A \wedge_k A \iff \cdots$$

with

$$d_i(m \otimes ... \otimes a_{n-1} \otimes a_n) = \begin{cases} m \otimes ... \otimes a_i a_{i+1} \otimes ... \otimes a_n & \text{if } i < n \\ a_n m \otimes ... \otimes a_{n-1} & \text{if } i = n \end{cases}$$

and

$$s_i(m \otimes ... \otimes a_n) = m \otimes ... \otimes a_i \otimes 1 \otimes a_{i+1} \otimes ... \otimes a_n$$

From Rings to Categories

Algebraic *K*-theory of a ring is computed via its category of modules and so the input was generalized to categories that share certain features (such as *Waldhausen categories*).

Hence, THH has also been generalized to various categories and in particular here we focus on the case of *spectrally enriched categories*: meaning a category \mathcal{C} with objects X, Y, Z, ... and for two objects a mapping spectrum $\mathcal{C}(X,Y)$ and composition

$$\mathcal{C}(X,Y) \wedge \mathcal{C}(Y,Z) \rightarrow \mathcal{C}(X,Z).$$

"Ring spectrum = Spectrally enriched category with one object"

THH of Bimodules

Let \mathcal{C},\mathcal{D} be spectrally enriched categories. A (C, \mathcal{D})-bimodule \mathcal{M} is a spectrum valued functor

$$\mathcal{M}: \mathcal{C}^{op} \wedge \mathcal{D} \to \mathrm{Sp}$$

and for a $(\mathcal{C}, \mathcal{C})$ -bimodule \mathcal{M} , $\mathrm{THH}(\mathcal{M}, \mathcal{C})$ is defined as

$$THH(\mathcal{M}, \mathcal{C}) =$$

$$\Rightarrow |\vee_{c_0,\ldots,c_n} \mathbb{C}(c_0,c_1) \wedge \mathbb{C}(c_1,c_2) \wedge \ldots \wedge \mathbb{C}(c_{n-1},c_n) \wedge \mathbb{M}(c_n,c_0)|$$

THH of Bimodules

Let \mathcal{C}, \mathcal{D} be spectrally enriched categories. A $(\mathcal{C}, \mathcal{D})$ -bimodule \mathcal{M} is a spectrum valued functor

$$\mathcal{M}: \mathcal{C}^{op} \wedge \mathcal{D} \to \mathrm{Sp}$$

and for a $(\mathcal{C}, \mathcal{C})$ -bimodule \mathcal{M} , THH $(\mathcal{M}, \mathcal{C})$ is defined as

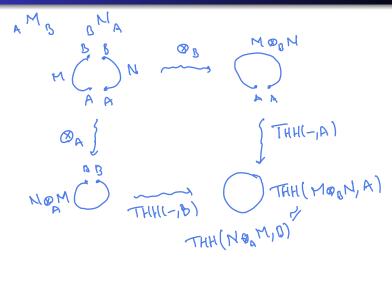
Moreover, for two modules $\mathcal{M}: \mathcal{C}^{op} \wedge \mathcal{D} \to \mathrm{Sp}, \ \mathcal{N}: \mathcal{D}^{op} \wedge \mathcal{C} \to \mathrm{Sp}$ we can define the $(\mathcal{C}, \mathcal{C})$ -module

$$\mathcal{M} \otimes \mathcal{N} : \mathcal{C}^{op} \wedge \mathcal{C} \to \operatorname{Sp}$$

 $\mathcal{M}\otimes\mathcal{N}:\mathfrak{C}^{op}\wedge\mathfrak{C}\to\operatorname{Sp}$ as $\mathcal{M}\otimes\mathcal{N}(c,c')=\mathcal{M}(c,-)\wedge_{\mathcal{D}}^{\bullet}\widetilde{\mathcal{N}}(-,c')$ and similarly $\mathcal{N}\otimes\mathcal{M}$ and we now have the following interesting result:

$$THH(\mathcal{M} \otimes \mathcal{N}, \mathcal{C}) \simeq THH(\mathcal{N} \otimes \mathcal{M}, \mathcal{D}).$$

What does this mean?



Bicategories

A bicategory has the data:

- Objects: $X, Y, Z \in Obj_{\mathcal{B}}$
- Morphisms: For two objects X, Y a category $\mathfrak{B}(X, Y)$.
- **Composition:** For three objects X, Y, Z a composition $\mathfrak{B}(X, Y) \times \mathfrak{B}(Y, Z) \to \mathfrak{B}(X, Z)$.
- **Identity:** For object X a unit morphism U_X which is an object in $\mathfrak{B}(X,X)$.
- **Associator:** For three composable morphisms f, g, h a natural isomorphism

$$(hg)f \stackrel{a}{\cong} h(gf)$$

known as the associator.

• Unitor: For a morphisms, $f: X \to Y$, natural isomorphisms

$$f(U_X) \stackrel{r}{\cong} f \stackrel{l}{\cong} U_Y f$$

known as the right and left unitor.

Enter Shadows I

Dealing with this structure becomes increasingly challenging, motivating Ponto to introduce the notion of a **shadow**, which precisely axiomatized the key aspects of $THH(\mathcal{M}, \mathcal{C})$.

Definition (Ponto)

Let $\mathcal B$ be a bicategory and $\mathcal D$ a category. A *shadow* on $\mathcal B$ with values in $\mathcal D$ is a functor

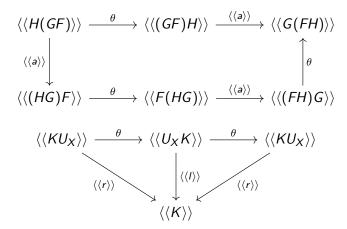
$$\langle \langle - \rangle \rangle : \coprod_{X \in \mathrm{Obj}(\mathcal{B})} \mathcal{B}(X, X) \to \mathcal{D}$$

such that for every pair of 1-morphisms $F:X\to Y$ and $G:Y\to X$ in $\mathcal{B},$ there is a natural isomorphism

$$\theta: \langle\langle FG\rangle\rangle \xrightarrow{\cong} \langle\langle GF\rangle\rangle.$$

Enter Shadows II

Moreover, for all $F: X \to Y$, $G: Y \to Z$, $H: Z \to X$, and $K: X \to X$ the following diagrams in \mathcal{D} commute:



THH is a Shadow

Let Mod be the bicategory with objects spectrally enriched categories and morphisms $\operatorname{Mod}(\mathcal{C},\mathcal{D}) = \operatorname{Mod}_{(\mathcal{C},\mathcal{D})}$, the homotopy category of $(\mathcal{C},\mathcal{D})$ -bimodules.

Theorem (Campbell-Ponto)

The functor

$$THH: \coprod_{\mathcal{C}} \operatorname{Mod}_{(\mathcal{C},\mathcal{C})} \to \operatorname{Sp}$$

is a shadow on Mod with values in Sp.

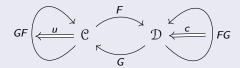
Notice the key input is the equivalence

$$\mathrm{THH}(\mathfrak{M}\otimes\mathfrak{N},\mathfrak{C})\simeq\mathrm{THH}(\mathfrak{N}\otimes\mathfrak{M},\mathfrak{D}).$$

Morita Equivalence

Definition

Let \mathcal{B} be a bicategory. We say two morphisms $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$ are *Morita dual* if there is a diagram of the form



satisfying the triangle identities and Morita equivalent if u, c are isomorphisms.

Shadows are Morita Invariant

Proposition (Campbell-Ponto)

Shadows are Morita invariant, meaning if we have a shadow $\langle \langle - \rangle \rangle$ on ${\mathbb B}$ and ${\mathsf F}$ and ${\mathsf G}$ are Morita equivalent, then

$$\langle \langle \mathrm{id}_{\mathfrak{C}} \rangle \rangle \cong \langle \langle \mathrm{id}_{\mathfrak{D}} \rangle \rangle$$

given via

$$\langle \langle \mathrm{id}_{\mathcal{C}} \rangle \rangle \stackrel{\langle \langle u \rangle \rangle}{\to} \langle \langle \mathit{GF} \rangle \rangle \stackrel{\theta}{\cong} \langle \langle \mathit{FG} \rangle \rangle \stackrel{\langle \langle c \rangle \rangle}{\to} \langle \langle \mathrm{id}_{\mathcal{D}} \rangle \rangle$$

This in particular generalizes Morita invariance of THH.

Question?

Any questions about THH or shadows?

Why Homotopy Coherence?

First of all there is a conceptual question how shadows are related to THH and why this axiomatization is able to recover these properties such as Morita invariance. Taking a higher categorical lense could clarify this connection.

Why Homotopy Coherence?

- First of all there is a conceptual question how shadows are related to THH and why this axiomatization is able to recover these properties such as Morita invariance. Taking a higher categorical lense could clarify this connection.
- ② There are now ∞-categorical approaches to THH, due to Nikolaus-Scholze, Berman, Ayala-Francis, Shadows could only be used to axiomatize them at the level of homotopy categories and a proper axiomatization would require an (∞, 2)-categorical version of a shadow.

Why Homotopy Coherence?

- First of all there is a conceptual question how shadows are related to THH and why this axiomatization is able to recover these properties such as Morita invariance. Taking a higher categorical lense could clarify this connection.
- ② There are now ∞-categorical approaches to THH, due to Nikolaus-Scholze, Berman, Ayala-Francis, Shadows could only be used to axiomatize them at the level of homotopy categories and a proper axiomatization would require an (∞, 2)-categorical version of a shadow.
- More fundamentally, there are coalgebraic version of THH, topological coHochschild homology, due to Shipley and Hess, and those cannot be studied at all at the point-set level (Péroux-Shipley).

THH of Bicategories

Using ideas regarding THH of enriched ∞ -categories due to Berman, we can define THH of a bicategory $\mathcal B$ as follows:

$$\begin{array}{l} \operatorname{THH}(\mathfrak{B}) \simeq \\ |\coprod_{X_0,...,X_n} \mathfrak{B}(X_0,X_1) \times ... \times \mathfrak{B}(X_n,X_0)| = |\coprod_{X_0,...,X_n} \underline{\mathfrak{B}(X_0,...,X_n,X_0)}| \simeq \end{array}$$

$$\geqslant | \coprod_{X_0} \mathbb{B}(X_0, X_0) \stackrel{d_0}{\underset{d_1}{\Longleftrightarrow}} \coprod_{X_0, X_1} \mathbb{B}(X_0, X_1, X_0) \stackrel{d_0}{\underset{d_2}{\Longleftrightarrow}} \coprod_{X_0, X_1, X_2} \mathbb{B}(X_0, X_1, X_2, X_0) |$$

evaluated in the (2,1)-category of categories (pseudo-colimit).

A functor $THH(\mathfrak{B}) \to \mathfrak{D}$ is called a **bicategorical trace**.

Category of Shadows

Definition

Let \mathcal{B} be a bicategory and \mathcal{D} a category, define the category $\operatorname{Sha}(\mathcal{B},\mathcal{D})$ as the category with objects shadows and morphisms natural transformations

$$\alpha: \langle \langle - \rangle \rangle_1 \to \langle \langle - \rangle \rangle_2$$

that commutes with the associator, unitor and the following diagram:

$$\langle \langle FG \rangle \rangle_1 \xrightarrow{\theta_1} \langle \langle GF \rangle \rangle_1$$

$$\downarrow^{\alpha_{FG}} \qquad \qquad \downarrow^{\alpha_{GF}} .$$

$$\langle \langle FG \rangle \rangle_2 \xrightarrow{\theta_2} \langle \langle GF \rangle \rangle_2,$$

Shadows vs. THH

We now have the following main theorem.

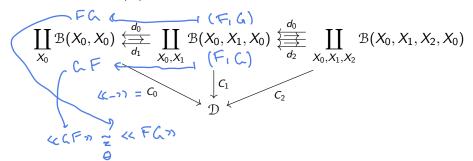
Theorem (Hess-R.)

Let $\mathcal B$ be a bicategory and $\mathcal D$ a category. There is an equivalence of categories natural in $\mathcal B$, $\mathcal D$ $\text{Fun}(\mathrm{THH}(\mathcal B), \mathcal D) \simeq \mathrm{Sha}(\mathcal B, \mathcal D)$

The equivalence is very explicit given by functors going in both directions with one side strictly composing to the identity.

How to go from THH to shadows via cocones

A functor $THH(\mathcal{B}) \to \mathcal{D}$ is the data of a pseudo-cocone



and we can already recognize the data of a shadow in this diagram!

Gist of Proof: Pseudocones

Let $\Delta_{\leq 2}$ be the truncated simplex category with objects [0], [1], [2]. THH(\mathfrak{B}) is defined via pseudo-colimit and so a functor out of it corresponds to solving the following pseudo-lifting problem:

The gist of the proof is recognizing that the conditions of a shadow are precisely the obstructions to such pseudo-lift, which uses a lot of ideas by Street and Lack.

Implications

Let us look at several implications

- 1 Why shadows and THH are related
- Morita Invariance
- $(\infty, 1)$ -Categorical Shadow

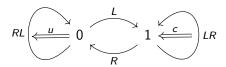
Shadows are just right!

We have seen before (and there are many other examples) that shadows are very effective in studying THH, Morita invariance and other phenomena.

Our proof gives a conceptual reason for this relation by characterizing shadows via THH again.

The Free Adjunction Bicategory

Let $\mathcal{A}\mathrm{d}j$ be the free adjunction 2-category, meaning it is the free 2-category on the diagram



and relations

$$cL \circ Lu = id \quad uR \circ Rc = id.$$

It has the property that a functor $F : Adj \to B$ is precisely a Morita dual diagram in B.

From free Adjunctions to Morita Invariance

Now for a bicategory
$$\mathcal{B}$$
 we get a functor
$$THH : Fun(\mathcal{A}dj,\mathcal{B}) \to Fun(THH(\mathcal{A}dj),THH(\mathcal{B})).$$

The objects on the left hand side are precisely the Morita dual pairs, so it would suffice to relate the right hand side to morphisms in $THH(\mathcal{B})$, which would require understanding $THH(\mathcal{A}dj)$.

THH of the Free Adjunction Category

The computation of $\mathrm{THH}(\mathcal{A}\mathrm{dj})$ is quite challenging, so we compute an approximation thereof. Let $\mathcal{A}\mathrm{dj}_{\leq 0}$ be the 2-category with the same generating 0, 1, 2-morphisms and with the additional relations LRL = L, RLR = R.

Proposition (Hess-R.)

There is an equivalence of categories

$$\operatorname{THH}(\operatorname{\mathcal{A}dj}_{\leq 0}) \simeq [2] = \{0 \leq 1 \leq 2\}$$

Moreover, the evident projection functor $\mathrm{THH}(\mathcal{A}\mathrm{dj}) \to \mathrm{THH}(\mathcal{A}\mathrm{dj}_{\leq 0}) \simeq [2]$ has a section.

Morita Invariance of Shadows via THH

Precomposing with this section gives us the desired map

$$\operatorname{Fun}(\operatorname{Adj}, \operatorname{\mathcal{B}}) \xrightarrow{\mathsf{Fun}} \operatorname{Fun}(\operatorname{THH}(\operatorname{Adj}), \operatorname{THH}(\operatorname{\mathcal{B}})) \xrightarrow{\mathsf{S}} \operatorname{Fun}([2], \operatorname{THH}(\operatorname{\mathcal{B}})) \xrightarrow{\mathsf{Fun}} \operatorname{Fun}([1], \operatorname{THH}(\operatorname{\mathcal{B}}))$$

that takes the Morita dual (C, D, F, G, c, u) in \mathcal{B} to the morphism

$$\mathrm{id}_C \overset{u}{\to} GF \cong FG \overset{c}{\to} \mathrm{id}_D$$

and functoriality implies that if the Morita dual is a Morita equivalence, then this morphism is an isomorphism.

Cool fact: This proof holds in a lot of places!

$(\infty,1)$ -Categorical Shadows

Using the main result we can also present the following definition:

Definition

Let $\mathcal B$ be an $(\infty,2)$ -category and $\mathcal D$ an $(\infty,1)$ -category. Then an $(\infty,1)$ -shadow is a functor of $(\infty,1)$ -categories $\mathrm{THH}(\mathcal B)\to \mathcal D$.

These notions are all well-defined due to work of Berman and in fact hold even if enriched over a symmetric monoidal ∞ -category.

The next natural step is then to construct examples thereof.

The Future

- **1** Lift THH to an $(\infty, 1)$ -shadow.
- 2 Tricategorical Shadows.
- **3** Construct coTHH as an $(\infty, 1)$ -shadow.

Let's explain the first two in more detail.

Traces of Spectrally Enriched ∞-Categories

We saw before that one key example of a shadow is THH itself. Using the outline we now can formulate the appropriate homotopy coherent version

Question

Let $\mathrm{Mod_{Sp}}$ be the $(\infty,2)$ -category of spectrally enriched bimodules. Prove there exists a functor of $(\infty,1)$ -categories

$$\mathrm{THH}:\mathrm{THH}(\mathrm{Mod}_{\mathrm{Sp}})\to\mathrm{Sp}$$

such that at level of homotopy categories

CP:

$$Ho(THH): HoTHH(Mod_{Sp}) \rightarrow HoSp$$

it recovers the shadow constructed by Ponto and Campbell.

Tricategorical Shadows

Question

Can we use similar steps to construct a tricategorical generalization of a shadow as the minimal data required to construct a lift

$$(\Delta_{\leq 3})^{op} \xrightarrow{X_0,...,X_n} \mathcal{B}(X_0,...,X_n,X_0)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Thank you! The End!

Thank you for your time!

For more details ...

- ... see the paper: Shadows are Bicategorical Traces, arXiv:2109.02144
- ... ask me: nima.rasekh@epfl.ch