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Algebraic Topology is great, but ...

Here are the axioms of this talk:

Homotopy theory is fascinating!

Spaces and Algebraic Topology are great!

Homotopy groups are worth computing!
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... it relies on set theory!

Algebraic topology is developed in the context of sets, meaning:

1 A topological space is a set with a topology.

2 A Kan complex is a simplicial set that satisfies a lifting
condition.

More precisely: The sub-category of discrete objects is equivalent
to sets. This causes issues!
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Set Based Natural numbers!

We define spheres using an inductive process:

1 S−1 = ∅
2 Sn = ΣSn−1.

Using this argument we can define the spheres Sn for
n ∈ {0, 1, 2, ...}. Then using spheres we can define homotopy
groups and truncation levels.
Our choice of natural number is restricted to the set of natural
numbers N = {0, 1, 2, ...}.
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Alternative foundations

Want to develop algebraic topology in a setting other than
the category of sets.

We focus on one example: filter products.

Needs filters.
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Filters

Let I be a set. A a filter should be thought of a collection of
“large” subsets of I .

Definition

A subset F ⊆ P(I ) is called a filter if

1 I ∈ F (The total subset is large)

2 U,V ∈ F ⇒ U ∩ V ∈ F (finite intersection of large subsets is
large)

3 U ∈ F,U ⊆ V ⇒ V ∈ F (supersets of large subsets are large)
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Filter Products

Let F be a filter on I . Define the category
∏

F Set as follows:

Objects: Indexed sets (Si )i∈I .

Morphisms: Partially indexed morphisms up to equality on
large subsets.

Hom∏
F Set((Si )i∈I , (Ti )i∈I ) =

∐
J∈F

(∏
i∈J

Hom(Si ,Ti )

)
/ ∼

(fi ) ∼ (gi )⇔ ∃J ∈ F(∀i ∈ J(fi = gi ))
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Filter Products Finitely Reasonable

The category
∏

F Set satisfies:

It has finite limits and colimits: They are computed
level-wise.

It is locally Cartesian closed (internal mapping objects):
Also computed level-wise.

It has a natural number object: Given level-wise.
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Ultraproducts

If U is a maximal non-trivial filter (also called ultrafilter) then the
category

∏
U Set satisfies:

1 It is Boolean: The final object 1 has no non-trivial subobjects.

2 It is generated by the final object: Two morphisms
f , g : X → Y are equal if and only if f (x) = g(x) for all
x : 1→ X .

3 If U is also non-principal, then
∏

U Set does not have infinite
colimits.

So
∏

U Set has relevant features of the category of sets, while not
being equivalent to it, meaning we get an alternative foundation!
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Examples of Filter products!

Let’s focus on an example:

Example

I = N
F = cofinite subsets (Frechet filter)

F is not an ultrafilter (it doesn’t include even or odd numbers),
but is included in some ultrafilter.

We want to show that
∏

F Set has new natural numbers! That
requires us understanding natural number objects in filter products.
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Examples of Filter products! More details!

Let’s be more detailed:
∏

F Set has

Objects: (Sn)n∈N

Morphisms: f : (Sn)n∈N → (Tn)n∈N is defined on a cofinite
subset ⇔ ∃N ∈ N(fn : Sn → Tn)n>N .

(fn)n>N1 ∼ (gn)n>N2 ⇔ ∃N3∀n > N3(fn = gn)

We want to show that
∏

F Set has weird natural numbers! That
requires us understanding natural number objects in filter products.
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Natural Numbers in Filter Quotients

Recall the natural number object in
∏

N Set corresponds to the
sequence of sets (N,N, ...).

Definition

A natural number is an element in Hom∏
F Set((1), (N)), meaning

it is an equivalence class [({a1}, {a2}, {a3}, ...)], where two natural
numbers are equal if they are “eventually equal”.
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Standard Natural Numbers

Some natural numbers look very familiar:
1 [({0}, {0}, {0}, {0}, {0}, ...)]
2 [({3}, {4}, {0}, {0}, {0}, ...)]
3 [({1}, {2}, {1}, {2}, {1}, ...)] =

[({1}, ∅, {1}, ∅, {1}, ...)]
∐

[(∅, {2}, ∅, {2}, ∅, ...)]

(1, ∅, 1, ...) (1, 1, 1, ...)

(1, 1, 1, ...) (N,N,N, ...)

p
({1},{2},{1},...)

({1},{1},{1},...)

(∅, 1, ∅, ...) (1, 1, 1, ...)

(1, 1, 1, ...) (N,N,N, ...)

p
({1},{2},{1},...)

({2},{2},{2},...)
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Some natural numbers are standard, ...

These natural numbers are known as standard, meaning we can
cover them by successor numbers [({n}, {n}, {n}, {n}, {n}, ...)].

Lemma

If the countable coproduct of the final object exists then all natural
numbers are standard, meaning the maps

{({n}, {n}, {n}, ...) : (1, 1, 1, ...)→ (N,N,N, ...)}n∈N

are jointly surjective.

For example, this holds in SetN. On the other side, we want to see
examples of non-standard natural numbers in

∏
F Set.
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... but some are non-standard!

The natural number ({1}, {2}, {3}, ...) is not standard. Indeed we
have

({1}, {2}, {3}, ...) ∩ ({n}, {n}, {n}, ...) =

(∅, ∅, ..., ∅, {n}, ∅, ...) = (∅, ∅, ...)

Hence, ({1}, {2}, {3}, ...) has no non-trivial intersection with any
successor natural number.
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... but some are non-standard! Categorical Version!

Phrased categorically, for all n we have pullback squares

∅ (1, 1, ...)

(1, 1, ...) (N,N, ...)

p

({1},{2},...)

({n},{n},...)

implying that ({1}, {2}, {3}, ...) is disjoint from the standard
natural numbers.

This cannot happen in SetN, for example.
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Some Theory: Elementary Toposes

There is a whole study of categories giving us alternative
foundations to mathematics: elementary toposes. They have
been studied extensively by many smart people with many
interesting results.

But we are topology people, so why would we care about any of
this?
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Moving up to topology

We can generalize the definition from set theory to topology. Let∏
F Top be the category given as:

1 Objects: indexed Kan complexes (Xn)n∈N.

2 Morphisms: A morphism f : (Xn)n∈N → (Yn)n∈N are
morphisms (fn)n>N that are eventually equal.

3 Equivalences: In particular a morphism f is an equivalence if
and only if it is eventually an equivalence.

What can we say about its homotopy theory?
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Theoretical Interlude I

We want to think of Top as a Kan enriched category, which is a
model for (∞, 1)-categories. We will not go into too many details.
Here is just a theoretical summary:

1 Given an (∞, 1)-category (quasi-category, complete Segal
space, Kan enriched category) C and a filter F on a set I , we
can construct the filter product

∏
F C as a direct construction

or filtered colimit.

2 If C has finite (co)limits then so does
∏

F C and it is defined
level-wise.

3 If C has a natural number object, then
∏

F C also has one
defined level-wise.
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Theoretical Interlude II

Definition

Given a finitely complete (∞, 1)-category C an object X is
0-truncated (discrete) if the diagonal ∆ : X → X × X is mono.
The subcategory of 0-truncated objects is denoted τ0C.

We have τ0Top ' Set.

Lemma

We have an equivalence τ0(
∏

F C) '
∏

F τ0C. In particular
τ0(
∏

F Top) '
∏

F Set.

Hence
∏

F Top has a different underlying logic as Top, despite
other similarities.
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Spheres and Truncated Objects

Hence
∏

F Top has the same natural numbers as
∏

F Set. Fix a
natural number {an} = [({a1}, {a2}, ...)].

Define the sphere S ({an}) = (Sa1 , Sa2 , ...).

For a given space X = (X1,X2, ...), we say X is
(an)-truncated if the induced map

X → X S(an+1)

is an equivalence in
∏

F Top.
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Internal vs. External Truncations: Some agree...

Here is a basic result about 0-truncated objects.

Lemma

An object X in C in 0-truncated if and only if for all objects Y , the
mapping space Map(Y ,X ) is 0-truncated (equivalent to a set).

This generalizes to n-truncations and applied to
∏

F Top gives us

Lemma

Assume (a1, a2, ...) is eventually equal to L. Then an object X in∏
F Top is (an)-truncated if and only if the mapping space

Map(−,X ) is L-truncated.
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... and some not!

On the other hand the natural number (1, 2, 3, ...) is non-standard.
So we cannot express

“X is (1, 2, 3, ...)-truncated”

via Map(−,X ) in spaces.

Similarly, we can use natural numbers to define homotopy groups,
so we have additional homotopy groups in this category.

This cannot happen if the category has infinite coproducts and
warrants further study!
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Upshot

1 Topology is great and has been able to prove many interesting
results.

2 However, the current work has restricted itself to a certain
kind of foundations.

3 This leaves us with the question what else is out there? The
filter product is one example, but clearly we expect more.

4 This general effort is known as synthetic algebraic topology
in homotopy type theory or elementary higher topos
theory.

5 There is much work left! We are barely in the 50s!
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Where do we go from here?

Focusing on filter products again:

1 Can we compute these new homotopy groups?

2 Can we use them to say anything meaningful about the
standard homotopy groups?

3 How about further homotopy theory? For example what is an
appropriate notion of spectra?

4 What implication does this have for operads and algebraic
structure?

Our first step is to show that filter product (∞, 1)-categories have
induced model structures.
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The End!

For more details see:

Filter Quotients and Non-Presentable (∞, 1)-Toposes,
arXiv:2001.10088

An Elementary Approach to Truncations,
arXiv:1812.10527

Thank you!

Questions?
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