A Step towards Non-Presentable Models of Homotopy Type Theory

Nima Rasekh

École Polytechnique Fédérale de Lausanne

July 6th, 2020

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Syntax vs. Semantics

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Syntax vs. Semantics

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Extensional Type Theories vs. 1-Categories

Lambek, Cartesian Closed Categories and Typed Lambda-calculi. Combinators and Func. Prog. Lang. (1985)

Lambek, Scott, Introduction to higher order categorical logic (1988)

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Intensional Type Theories vs. $(\infty, 1)$ -Categories

Kapulkin, Szumilo, Internal languages of finitely complete (∞ , 1)-categories Selecta Math. (N.S.) 25 (2019)

Kapulkin, Locally cartesian closed quasi-categories from type theory, J. Topol. 10 (2017)

Is there anything we can say about models of intensional type theory?

If we add one non-elementary condition to the $(\infty,1)\text{-category}$ side, namely presentability, we do get interesting models:

- Presentable locally Cartesian closed (∞, 1)-categories are models of Intensional Martin-Löf Type Theory with ∏-, ∑-, and id-types. [Gepner-Kock, 2017], [Lumsdaine-Warren, 2015], [Shulman, 2015].
- Grothendieck (∞, 1)-topoi (presentable locally Cartesian closed (∞, 1)-categories that satisfy descent) are a model for homotopy type theory [Shulman, 2019].

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Intensional Type Theories vs. (∞ , 1)-Categories

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Intensional Type Theories vs. (∞ , 1)-Categories

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Elementary $(\infty, 1)$ -topoi are the Answer ...

This suggests that we should develop

Elementary $(\infty, 1)$ -Topos Theory

and prove a result analogous to the relation between extensional type theories and elementary 1-topoi.

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

... but they are difficult to study

We know some things about elementary $(\infty, 1)$ -topoi, but not yet enough to relate it to homotopy type theory. Here is a more realistic step:

Goal ● Construct a specific elementary (∞, 1)-topos.

Prove it is a model for homotopy type theory.

This talk focuses on Step 1.

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Can we even define elementary $(\infty, 1)$ -topoi?

Warning

There are definitions of elementary $(\infty, 1)$ -topoi that have been proposed, but the "correct" definition depends on its relation to homotopy type theory.

Nonetheless we will work with a definition throughout this talk!

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Elementary $(\infty, 1)$ -topos

Definition (Shulman, R.)

An *elementary* $(\infty, 1)$ -*topos* is an $(\infty, 1)$ -category \mathcal{E} satisfying following conditions:

- **\bigcirc** \mathcal{E} has finite limits and colimits.
- 2 \mathcal{E} is locally Cartesian closed.
- **3** \mathcal{E} has a subobject classifier Ω .
- There exists a class of object U^S (universes) and embeddings of functors

$$\mathcal{I}^{\mathsf{S}}: \mathrm{Map}(-, \mathfrak{U}^{\mathsf{S}}) \hookrightarrow (\mathcal{E}_{/-})^{\simeq}$$

such that the family of embeddings $\{\mathcal{I}^{S}\}_{S}$ is jointly surjective.

What does any of this mean?

- $Map(-, \mathcal{U}^{\mathcal{S}}) \to (\mathcal{E}_{/-})^{\simeq} \Rightarrow$ universal fibration $\tilde{\mathcal{U}}^{\mathcal{S}} \twoheadrightarrow \mathcal{U}^{\mathcal{S}}$.
- **③** \mathcal{I}^{S} jointly surjective \Rightarrow every map *classified* by some \mathcal{U}^{S} .
- Oisagreement on how to characterize universes.
- **(**) We often want the image of \mathcal{I}^S to be closed under operations (limits, colimits, ...).

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

How does it relate to other definitions?

Here is a basic result relating various notions of topoi.

Lemma (R.)

Let \mathcal{E} be an elementary $(\infty, 1)$ -topos.

- The subcategory of 0-truncated objects is an elementary 1-topos.
- ② E satisfies descent. In particular E is presentable if and only if it is a Grothendieck (∞, 1)-topos.

So, it is a common generalization of elementary 1-topoi and Grothendieck $(\infty, 1)$ -topoi.

Syntax vs. Semantics Elementary $(\infty, 1)$ -Topoi

Only Non-Presentability Counts

The result by Shulman implies that presentable elementary $(\infty, 1)$ -topoi are already models and we should focus on non-presentable ones.

Question

How can we construct non-presentable elementary $(\infty, 1)$ -topoi?

Basics Towards Non-Presentable Models

Filter Construction: Introduction

Let \mathcal{E} be a finitely complete 1-category. Let $\mathcal{F} \subset Sub(1)$ be a *filter* of subterminal objects, meaning:

- **1** Non-Empty: $1 \in \mathcal{F}$.
- 2 Intersections: $U, V \in \mathcal{F} \Rightarrow U \times V \in \mathcal{F}$.
- **(**) Upwards closed: $U \in \mathcal{F}, U \leq V \Rightarrow V \in \mathcal{F}$

Then we will define a new category $\mathcal{E}_{\mathcal{F}}$.

Basics Towards Non-Presentable Models

Filter Construction: Construction

- Objects of $\mathcal{E}_{\mathcal{F}}$ are objects of \mathcal{E} .
- For two object X, Y we have

 $\operatorname{Hom}_{\mathcal{E}_{\mathcal{F}}}(X,Y) = \{f: X \times U \to Y: U \in \mathcal{F}\}/\sim$

where for $f : X \times U \rightarrow Y$, $g : X \times V \rightarrow Y$

$$f \sim g \Leftrightarrow \exists W \in \mathcal{F}(f \times \mathrm{id}_W = g \times \mathrm{id}_W)$$

Basics Towards Non-Presentable Models

Filter Construction: Results

Lemma (Johnstone: Sketches of an Elephant)

The quotient map

$$\mathfrak{P}_{\mathcal{F}}: \mathcal{E} \to \mathcal{E}_{\mathcal{F}}$$

preserves

- **1** finite limits and colimits,
- locally Cartesian structure,
- subobject classifier.

So, if \mathcal{E} is an elementary 1-topos then $\mathcal{E}_{\mathcal{F}}$ is one as well.

Basics Towards Non-Presentable Models

Filter Construction: Generalization

We want to generalize this construction to $(\infty, 1)$ -categories. Here we need to care about which model of $(\infty, 1)$ -categories we are using:

- 4 Kan enriched categories
- Quasi-Categories
- Omplete Segal spaces

Filter Construction: Kan enriched categories

- Input: A finitely complete Kan enriched category C and a filter of subterminal objects *F*.
- 2 We can take $\mathcal C$ to be a simplicial object in categories:

$$\mathcal{C}_{\bullet}: \Delta^{op} \to \mathbb{C}at.$$

- **3** Construct $(\mathcal{C}_{\bullet})_{\mathcal{F}} : \Delta^{op} \to \mathcal{C}at.$
- Output: The simplicial category C_F, which is a Kan enriched category.

Basics Towards Non-Presentable Models

Filter Construction: Quasi-categories and Complete Segal spaces

Let ${\mathfrak C}$ be a finitely complete quasi-category or CSS and ${\mathcal F}$ a filter of subterminal objects. Then define the functor

Then we define the *filter construction* as the colimit

$$\mathfrak{C}_{\mathcal{F}} = \operatorname{colim}(\mathfrak{C}_{/-}: \mathcal{F}^{op} \to \mathfrak{Cat}_{\infty})$$

Basics Towards Non-Presentable Models

Filter Construction and Topos Theory

Theorem (R.)

Let C be finitely complete $(\infty, 1)$ -category and \mathcal{F} a filter of subterminal objects. Then we have a quotient functor

 $\mathfrak{P}_{\mathcal{F}}:\mathfrak{C}\to\mathfrak{C}_{\mathcal{F}}$

which preserves

- **1** finite limits and colimits
- Iocally Cartesian closed structure
- subobject classifiers
- universes

So, in particular if \mathcal{E} is an elementary $(\infty, 1)$ -topos then $\mathcal{E}_{\mathcal{F}}$ is one as well.

Basics Towards Non-Presentable Models

How do we get non-Presentable Examples?

Theorem (Adelman-Johnstone 82)

Let \mathfrak{I} be a set and \mathcal{F} a non-principal filter on $\mathfrak{Set}^{\mathfrak{I}}$ (which is just a filter on $P(\mathcal{I})$). Then the filter construction $(\mathfrak{Set}^{\mathfrak{I}})_{\mathcal{F}}$ is non-presentable elementary 1-topos and so a non-presentable model of higher order type theory.

This result generalizes appropriately.

How do we get non-Presentable Examples?

Theorem (R.)

Let \mathfrak{I} be a set and \mathcal{F} a non-principal filter on $\mathfrak{Kan}^{\mathfrak{I}}$. Then the filter construction $(\mathfrak{Kan}^{\mathfrak{I}})_{\mathcal{F}}$ is a non-presentable elementary $(\infty, 1)$ -topos.

Example (R.)

Let \mathcal{F} be the filter of co-finite subsets on \mathbb{N} (the *Fréchet filter*). Then $(\mathcal{K}an^{\mathbb{N}})_{\mathcal{F}}$ is an elementary $(\infty, 1)$ -topos, such that:

- It is not presentable.
- It has no infinite coproducts (except for initial object).
- The natural number object is non-standard.

Let's Summarize!

- We want models of homotopy type theory.
- We defined elementary (∞, 1)-topoi and hope to prove they give us the desired models.
- Shulman's result covers the presentable case so the focus should be on non-presentable ones.
- Output Structure Struc
- On we prove these are models?

Basics Towards Non-Presentable Models

How does this tie to Type Theory?

The filter construction is a (filtered) colimit.

Question

Are models of homotopy type theory closed under (filtered) colimits?

The results by Shulman only prove closure under presheaf and localization constructions.

Basics Towards Non-Presentable Models

References. Thank you! Questions?

For more details see:

Filter Quotients and Non-Presentable (∞ , 1)-Toposes, arXiv:2001.10088

Thank You!

Questions?