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Introduction
EHT vs. HoTT

Intuition

An elementary higher topos is an (co, 1)-category ...

© ... that behaves like the (oo, 1)-category of spaces.
@ ... that should be a model for homotopy type theory.

© ... generalizes an elementary topos from classical category
theory.
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Introduction
EHT vs. HoTT

Connections to Homotopy Type Theory ...

Here is what should be true:

@ An Elementary Higher Topos should be a model for Homotopy
Type Theory.

@ Homotopy Type Theory should be the internal language of an
Elementary Higher Topos.
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Introduction
EHT vs. HoTT

... but we are not there yet

However, we still don’t know how to make this argument precise as
it is tricky to go from the strictness of a type theory to the
flexibility of an (oo, 1)-category.

We don’t have such a general result, but we can focus on specific
results in homotopy type theory and how they relate to elementary
higher toposes.
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Higher Category Theory

Definitions Elementary Higher Topos

(00, 1)-Category Theory

An (0o, 1)-category C has following properties:
O It has objects x, y, z, ...

@ For any two objects x, y there is a mapping space (Kan
complex) mape(x, y) with a notion of composition that holds
only “up to homotopy”.

© Mapping spaces give us homotopic maps and equivalences.
Homotopy: Two maps f, g : x — y are homotopic if they are
homotopic in the space mape(x,y).
Equivalence: A map f is an equivalence if there exist g, h
such that fg and hf are homotopic to identity maps.

@ This is a direct generalization of classical categories and
isomorphisms and all categorical notions (limits, adjunction,
...) generalize to this setting.
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Higher Category Theory
Elementary Higher Topos

Definitions

Core of an (oo, 1)-category

We denote the subcategory of equivalences by €.

ecore

is an (oo, 1)-groupoid, which is an (oo, 0)-category. An
(00, 0)-category is a space, where we have:

@ Points in the space are the objects.
@ Paths in the space are the morphisms

© 2-cells are homotopies

o ..
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Higher Category Theory

Definitions Elementary Higher Topos

Examples

@ Spaces form an (oo, 1)-category which we denote by Spaces.

@ For a cardinal x, we denote the sub-category of x-small spaces
as Spaces”. Notice in this case (Spaces™) is a space that is
NOT k-small.

© (o0, 1)-categories form a large (oo, 1)-category denoted by
Catyo.

Q Classical categories are all (0o, 1)-categories, in particular Set
is an (00, 1)-category.
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Higher Category Theory

Definitions Elementary Higher Topos

Subobjects

Let C have finite limits. There is a functor
Sub(—) : C%P — Set

that takes each object ¢ to the set of equivalence classes of
subobjects of ¢ (mono maps into ¢).

Example

In Spaces the subobjects are exactly the (—1)-truncated maps i.e.
maps f : X — Y such that the following map is an equivalence

X —3s XxX
Y

(alternatively f is an equivalence on path-components).
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Higher Category Theory

Definitions Elementary Higher Topos

Subobject Classifiers

Definition

A subobject classifier in C is an object €2 representing Sub(—). So
for each object ¢ we have
Sub(c) = mape(c, Q)

In particular, there is a universal subobject t : 1 — € and for each
subobject 7 : ¢/ — ¢ there is a pullback square

/

(@)

—_
-

a -.
D(fl—‘
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In Spaces we have Q = {0, 1}.
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Higher Category Theory

Definitions Elementary Higher Topos

Generalizing Subobject classifiers

Definition

Let C have finite limits. There is a map
€/_: € — Cateo

taking an object c to the over-category C/..
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Higher Category Theory

Definitions Elementary Higher Topos

Generalizing Subobject classifiers

Let C have finite limits. There is a map
€/_: € — Cateo

taking an object c to the over-category C/..

Definition

Let S be a suitable subclass of maps. We define
((G/_)S)Core : @% — Catyy ——» Spaces

taking an object ¢ to the space ((G/C)S)Core, the full subspace of
(€)' generated by elements in S.
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Higher Category Theory

Definitions Elementary Higher Topos

How does (C/.) look like?

@ Points (0-Simplices): /
fes

d —=—— d
@ Paths (1-Simplices): \ /
! fes

d//

© Two-Simplices:

— 1"

f’es
f’exl %S
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Higher Category Theory

Definitions Elementary Higher Topos

Universes

Definition

Let C have finite limits and let S be a subclass of maps. An object
U is called a universe if it represents (G/_)Core.
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Higher Category Theory

Definitions Elementary Higher Topos

Universes

Definition
Let C have finite limits and let S be a subclass of maps. An object
U is called a universe if it represents (G/_)Core.

Example

Let x be a suitably large cardinal and S the class of maps with
r-small fiber. Then

U~ = (Spacesn)core,

((Spaces x)")°°" ~ mapgpaces(X, U")

where X is a space.
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Higher Category Theory

Definitions Elementary Higher Topos

Universal Fibration

For a universe U° there is a universal fibration p : U2 — U° such
that for each map f : Y — X in S there is a pullback square

Y —— u?
r

X — U
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Higher Category Theory
Elementary Higher Topos

Definitions

Universal Fibration

For a universe U° there is a universal fibration p : U2 — U° such
that for each map f : Y — X in S there is a pullback square

Y —— u?
r

Continuing our previous example in spaces we have

UL = (Spacesy)®

with p : (Spacesf)<°® — (Spaces”)<"® the forgetful map.
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Higher Category Theory

Definitions Elementary Higher Topos

Example: Objects via Universal Fibrations

A map fx : * — Spaces” corresponds to a choice of k-small space
X. We can pull back the universal fibration along fx:

X ~ map(x,X) ——— (Spacesf)<re
r

T (Spaces')ceore

Nima Rasekh - MPIM Algebraic Topology in an Elementary Higher Topos 14 /38



Higher Category Theory

Definitions Elementary Higher Topos

Elementary Higher Topos

We call an (oo, 1)-category € an elementary higher topos if it
satisfies following conditions:

@ It has finite limits and colimits.
@ It has a subobject classifier.
© It is locally Cartesian closed.

@ There exists a chain of universes {U°} such that each map is
classified by a universe.
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Higher Category Theory

Definitions Elementary Higher Topos

Examples

As we have shown Spaces is an elementary higher topos.

Example (Theorem 6.1.6.8, Higher Topos Theory, Lurie)

More generally every higher topos X is an elementary higher
topos. This follows from the following two facts:

© For a large enough cardinal s the descent condition implies
that the functor:

((X¢/—)7)re - X°P — Spaces

takes colimits to limits.

@ The presentability implies that any such functor is represented
by an object U".
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Towards Algebraic Topology

For the rest of the talk we want to see what kind of algebraic
topological concepts we can prove in an arbitrary elementary
higher topos (EHT).
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Definition of an NNO

Let € be an EHT. A natural number object is an object N along
with two maps 0 : 1 — N and s : N — N such that for all (X, b, u)

N——> N

3if 3

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
~ ~

X —4Y 5 X

the space of maps f making the diagram commute is contractible.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

NNOs and Logical Constuctions

We can use NNOs in the classical setting to prove infinite results
without assuming the existence of infinite colimits.

Theorem (Theorem D5.3.5, Sketches of an Elephant, Johnstone)

Let € be an elementary 1-topos with natural number object.
Then we can construct free finitary algebras (monoids, groups, ...).

In an elementary topos the existence of an NNO is not a vacuous
condition as there are elementary toposes without NNOs (such as
finite sets).
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

NNOs in an EHT

In the higher setting things are different

Every EHT has a natural number object.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

NNOs in an EHT

In the higher setting things are different

Every EHT has a natural number object.

The idea is to build an infinite object out of a finite one.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Idea of Proof |

We use the fact from algebraic topology that 71(S!) = Z.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Idea of Proof |

We use the fact from algebraic topology that 71(S!) = Z.
We can take a coequalizer (in the EHT)
id 1
P

The object S behaves similar to the circle in spaces. In particular
we can take it's loop object.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Idea of Proof Il

QS? behaves similar to the classical loop space of the circle: It
comes with an automorphism s : QS — QS! and a map
0:1—QSh

The smallest subobject of Q5! closed under s and o is immediately
an NNO in the classical setting (the elementary topos of
O-truncated objects). Finally, we use an argument by Shulman to
prove it is an NNO in the higher setting.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

The Three Aspects of an Elementary Higher Topos

It is interesting to observe how all three aspects of a topos are
used in this proof:

@ First we use our knowledge of spaces to build the object QS?.

@ Then we use our knowledge of elementary toposes to show
we have an NNO in the underlying elementary topos.

© Finally, we use homotopy type theory to prove it is an NNO
in the actual elementary higher topos.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Sequential Diagrams

Using natural number objects, we can define sequential colimits in
a topos. This is based on work of Rijke in homotopy type theory.

Definition

A sequence of objects is a map {Ap},n : N — U. This is
equivalent to a map p: >, .y Asr = N.

Definition

A sequential diagram

fo fi f

Ao > Al Ao

is a choice of map {f,} v : D5 An = Dy Ant1 over N
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Sequential Colimits

Definition
For a sequential diagram {(An, fn) }n:y we define the sequential
colimit A, as the coequalizer

{fn}n:N
Zn:N An —d> Zn:N An — A

We will use sequential colimits to construct truncations.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Truncated Objects

Definition
A space X is n-truncated if mx(X) = * for all k > n.

Definition

An object X in a (0o, 1)-category is n-truncated if map(Y, X) is
an n-truncated space for all Y.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Truncations

One amazing feature of spaces is the existence of truncations. We
can take any space X and universally construct a truncated object
TnX.

There exists an adjunction

Tn
Spaces %> TpSpaces
1

where i is the inclusion.

The original proof is via the small object argument, which does not
generalize.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Truncations in an Elementary Higher Topos

However, there is an alternative approach with the same result:

Let €& be an EHT. Then there exists an adjunction

n

where i is the inclusion.

The idea for the proof comes from work of Egbert Rijke in the
context of homotopy type theory.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

(—1)-Truncations

There are two steps

Proposition
For any object A, the sequential colimit of the diagram

A As AT (Ax Ay KA

is the (—1)-truncation. Here Ax B = A[],. g B.

Remark

This result is the (0o, 1)-categorical analogue of Theorem 3.3 of
The Join Construction by Rijke. But, the proof uses a different

approach. It is not completely clear how to translate the proofs

from higher category theory to homotopy type theory (and vice

versa).
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Natural Number Objects
Truncations

Algebraic Topology in an EHT Blakers-Massey Theorem

n-Truncations in Spaces

We can generalize the previous result to hold for any n via
induction. Here is the idea: In order to (n+ 1)-truncate a space X,

it suffices to n-truncate all the loop spaces €2, X for each basepoint
x in X.
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Natural Number Objects
Truncations

Algebraic Topology in an EHT Blakers-Massey Theorem

n-Truncations in Spaces

We can generalize the previous result to hold for any n via
induction. Here is the idea: In order to (n+ 1)-truncate a space X,

it suffices to n-truncate all the loop spaces €2, X for each basepoint
x in X.

Tn+1(X)

X «—— (8paces®)X —— (7,8pacese)X

x ——— Path(—,x) ———— 7p(Path(—, x))
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

n-Truncations in an Elementary Higher Topos

This argument directly generalizes to an elementary higher topos.

Tn+1(X)

X ux (TaU)X

where X — UX is the map classifying Ax : X — X x X.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

n-Truncations in an Elementary Higher Topos

This argument directly generalizes to an elementary higher topos.

Tn+1(X)

X ux (TaU)X

where X — UX is the map classifying Ax : X — X x X.

Again, the proof has some similarities with the proof in homotopy
type theory, but also some differences.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

The classical Blakers-Massey Theorem

One fascinating result in algebraic topology is the Blakers-Massey
theorem.

Theorem

X — W

Let the above be a pushout diagram in Spaces, such that f is
m-connected and g is n-connected. Then the map
(f,g): Z — X xw Y is (m+ n)-connected.

We want to show that this result holds in an elementary higher
topos as well.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Functorial Factorization

Definition

A functorial factorization is a choice of functors on the arrow
categories L : E7 — &7 and R: &7 — &7 such that

f ~ R(f) o L(F).

We call maps in the image of £ the left class and in the image of
R the right class.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Modalities

A factorization system is a functorial factorization such that the
space of lifts of the following diagram is contractible

Z —Y

X — W

where f is in the left class and g in the right class.

Definition

A modality is a factorization system such that the left class is
closed under base change.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Blakers-Massey Theorem for Modalities in a Higher Topos

Fortunately, we have following general result:

Theorem (Theorem 4.1.1 of Generalized Blakers-Massey Theorem

by Anel, Biedermann, Finster and Joyal)

Let & be a presentable elementary higher topos. Let

Z % vy

r

X —h sw

be a pushout diagram such that the pushout product Afl1zAg is
in L. Then the map (f,g) : Z — X xw Y isin £ as well.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Classical Blakers-Massey Theorem in a Higher Topos

The class of n-truncated and n-connected maps form a modality,
with £ being n-connected maps and R the n-truncated maps.
Combining the previous two results we get:

The classical Blakers-Massey theorem holds in a presentable
elementary higher topos.
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Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Blakers-Massey in an Elementary Higher Topos

Doubly fortunately, the proof of their theorem does not actually
require the presentability condition.

The generalized (and thus also the classical) Blakers-Massey
theorem holds in an elementary higher topos.
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Blakers-Massey in an Elementary Higher Topos

Doubly fortunately, the proof of their theorem does not actually
require the presentability condition.

The generalized (and thus also the classical) Blakers-Massey
theorem holds in an elementary higher topos.

In a presentable elementary higher topos we can construct
factorization systems out of sets of maps, which allows us to build
new modalities. However, in an elementary higher topos, we
cannot do that and we have to assume their existence to be able to
use Blakers-Massey theorem.
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Natural Number Objects
Truncations
Algebraic Topology in an EHT Blakers-Massey Theorem

Further Algebraic Topology in an Elementary Higher Topos

What else can we do? Here are some further topics related to
algebraic topology that can be studied in an EHT:

@ We have truncations and spheres, which means we can define
homotopy groups. How does the homotopy groups of spheres
compare with the classical homotopy groups?

© Blakers-Massey gives us Freudenthal suspension theorem,
which means we have stabilizations. How does the
stablization compare to spectra?

© Can we construct Eilenberg-MacLane objects in an elementary
higher topos?
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