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History
Quasi-Categories

Unstraightening Construction
Proof & Application

Case of Sets
Straightening

The Case of Sets

Theorem

Let X be a set. There is an equivalence of categories:

Set/X Fun(X , Set)
p−1()

q

between sets over X and set-valued maps from X.
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X
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Other side:

qx∈XF (x)

X Set

X
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Grothendieck Construction

Can be generalized to categories:

Theorem (Grothendieck)

Let C be a category. There is the following adjunction:

Cat/C FunCat(C
op,Set)

colim∫
between categories over C and set-valued functors from C, which
becomes the following equivalence:

Fib(C) FunCat(C
op,Set)

colim∫
if we restrict to categories fibered in sets over C.
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Unstraightening Construction
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Case of Sets
Straightening

The Idea of Straightening

Idea

For C a ”higher category”, there is an ”equivalence”:
{certain objects over C} ≈ {functors from Cop into spaces}

1 What is a higher category?

2 What is an equivalence?

3 What are certain objects?
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Example

What is a higher Category?

Idea (Idea of a Higher Category)

A category which has ”higher morphisms”.

Different ways to concretely encode this idea.

We will focus on quasi-categories

Nima Rasekh - UIUC A new Approach to Straightening 7 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Basic Idea
Example

What is a higher Category?

Idea (Idea of a Higher Category)

A category which has ”higher morphisms”.

Different ways to concretely encode this idea.

We will focus on quasi-categories

Nima Rasekh - UIUC A new Approach to Straightening 7 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Basic Idea
Example

What is a higher Category?

Idea (Idea of a Higher Category)

A category which has ”higher morphisms”.

Different ways to concretely encode this idea.

We will focus on quasi-categories

Nima Rasekh - UIUC A new Approach to Straightening 7 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Basic Idea
Example

Basic Idea of Quasi-Categories

Example (2-Cell = 2-Simplex = Triangle = ∆2)

0 2

1

h

f
α g

It has ...

1 3 Objects represented by the numbers

2 3 (non-dg) 1-Morphisms represented by the lines

3 1 (non-dg) 2-Morphism represented by the arrow

Think of 2-morphism α as ”homotopy” between h and g ◦ f
Way to encode it:

{0, 1, 2} {f , g , h} {α} · · ·
s

t
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Basic Idea
Example

Example of Quasi-Categories

Example (Quasi-Category of Spaces)

S: Quasi-Category of spaces.

Spaces Cont.Maps Homotopies · · ·
s

t

Other Examples:

1 QCat the (large) quasi-category of (small) quasi-categories

2 If X is a quasi-category then X op

3 If X and Y are two quasi-categories then Fun(X ,Y )

4 Other particular Fun(X op, S)
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Back to Straightening (More Precise Version)

Idea

For C a ”higher category”, there is an ”equivalence”:
{certain objects over C} ≈ {functors from Cop into spaces}

1 Higher category: quasi-category

2 Equivalence: adjunctions & equivalences

3 Certain objects: Right fibrations over C
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The Straightening Construction

Theorem (Lurie)

Let X be a quasi-category. There is the following adjunction:

QCat/X Fun(X op, S)
StX

UnX

between quasi-categories over X and space-valued functors from
X op, which becomes the following equivalence:

RFib(X ) Fun(Cop, S)
StX

UnX

if we restrict to right fibrations over X .
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Unstraightening Functor (Definition)

Construct functor UnX : Fun(X op, S)→ S/X .

Definition

Fix F : X op → S

(UnXF )n = {g ∈ Xn = Hom(∆n,X ) : (∆n)op S

Stn

G◦(g)op

α }

Nima Rasekh - UIUC A new Approach to Straightening 12 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Definition
Concrete Construction
Example

Unstraightening Functor (Concrete Example)

Let F : ∆2 → S be the following:

0 2

1

h

f
α g

⇒

∆0 ∆1

∆1

end

start st→end id
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Unstraightening Functor (Concrete Example)

We will do construction level-wise.
Level-wise version of ∆2:

• •

•

• •

•

• •

•
(∆2)0 (∆2)1 (∆2)2

We build UnXF step by step over X = ∆2
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Unstraightening Functor (Concrete Example)

•

•

• •

•

• •

•

• •

•

• •

•
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Unstraightening Functor (Concrete Example)

•

•

• •

•

•

•

• •

•

∗

∗

• •

•

• •

•

• •

•
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•
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•
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History
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Unstraightening Construction
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Definition
Concrete Construction
Example

Unstraightening Functor (Moral of the story)

The moral is that we build the unstraightening construction
diagonally step by step.

0th step is exactly the case of sets we described in the
beginning
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Important Example

Let ρx : X op → S be the representable functor
(ρx(y) = MapX (y , x))

UnXρx :
y z

w x

y z

w

y z

w

...

Nima Rasekh - UIUC A new Approach to Straightening 20 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Definition
Concrete Construction
Example

Important Example

Let ρx : X op → S be the representable functor
(ρx(y) = MapX (y , x))

UnXρx :
y z

w x

y z

w

y z

w

...

Nima Rasekh - UIUC A new Approach to Straightening 20 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Definition
Concrete Construction
Example

Important Example

Let ρx : X op → S be the representable functor
(ρx(y) = MapX (y , x))

UnXρx :
y z

w x

y z

w

y z

w

...

Nima Rasekh - UIUC A new Approach to Straightening 21 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Definition
Concrete Construction
Example

Important Example

Let ρx : X op → S be the representable functor
(ρx(y) = MapX (y , x))

UnXρx :
y z

w x

y z

w x

...

y z

w

y z

w

...

Nima Rasekh - UIUC A new Approach to Straightening 22 / 30



History
Quasi-Categories
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Definition
Concrete Construction
Example

Over-Categories

This structure is familiar. It is an ”over-category”.

Lemma (Unstraightening of Representable)

For x ∈ X an object we have UnX (ρx) = X/x

”Bundling up the functor with values maps into x gives us the
category of things over x”
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Quasi-Categories

Unstraightening Construction
Proof & Application

Why it might be true
What is it good for?

Representable Functors

Representable functors are special:

Lemma (Yoneda Lemma)

Let F : X op → S be a functor and x an object. Then we have
following equivalence:

Map(ρx ,F ) ∼= F (x)

Corollary

Let α : F → G : X op → S be map of functors. Then α is an
equivalence if and only if

Map(ρx , α) : Map(ρx ,F )→ Map(ρx ,G )

is homotopy equivalence of spaces (for every object x in X).

Nima Rasekh - UIUC A new Approach to Straightening 24 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Why it might be true
What is it good for?

Representable Functors

Representable functors are special:

Lemma (Yoneda Lemma)

Let F : X op → S be a functor and x an object. Then we have
following equivalence:

Map(ρx ,F ) ∼= F (x)

Corollary

Let α : F → G : X op → S be map of functors. Then α is an
equivalence if and only if

Map(ρx , α) : Map(ρx ,F )→ Map(ρx ,G )

is homotopy equivalence of spaces (for every object x in X).

Nima Rasekh - UIUC A new Approach to Straightening 24 / 30



History
Quasi-Categories

Unstraightening Construction
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Why it might be true
What is it good for?

Representable Maps for Right Fibrations

Over-Categories are similar for right fibration:

Lemma (Yoneda Lemma for Right Fibrations)

In the following diagram (Y,Z are right fibrations over X)

Y Z

X

f

f is an equivalence if and only if

Map/X (X/x , f ) : Map/X (X/x ,Y )→ Map/X (X/x ,Z )

is an equivalence of spaces (for every object x in X).
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Unstraightening Construction
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Why it might be true
What is it good for?

Representable Functors (Another Look)

There is a notion of ”tensor” of categories. In particular:

Lemma

For F : X op → S and x an object we have an equivalence

F ⊗Map(x ,−) ∼= F (x)

Lemma

Let α : F → G : X op → S be map of functors. Then α is an
equivalence if and only if

α⊗Map(x ,−) : F ⊗Map(x ,−)→ G ⊗Map(x ,−)

is an equivalence of spaces (for every object x in X).
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Representable Maps

The tensor construction allows for more general statements:

Lemma (Yoneda Lemma for Maps)

In the following diagram

Y Z

X

f

f is an equivalence if and only if

Xx/ ×X f : Xx/ ×X Y → Xx/ ×X Z

is an equivalence of spaces (for every object x in X). Here Xx/ is
the category of object under x.
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Why it might be true
What is it good for?

Fun Fact about Spaces

Every space S is a special case of a higher category.

In the case of spaces a right fibration is a map of spaces.

So, we get this:

Corollary

For S a space there is an equivalence of higher categories:

S/S Fun(S , S)
StS

UnS

Note the similarity to the case of sets!

Nima Rasekh - UIUC A new Approach to Straightening 28 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Why it might be true
What is it good for?

Fun Fact about Spaces

Every space S is a special case of a higher category.

In the case of spaces a right fibration is a map of spaces.

So, we get this:

Corollary

For S a space there is an equivalence of higher categories:

S/S Fun(S , S)
StS

UnS

Note the similarity to the case of sets!

Nima Rasekh - UIUC A new Approach to Straightening 28 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Why it might be true
What is it good for?

Fun Fact about Spaces

Every space S is a special case of a higher category.

In the case of spaces a right fibration is a map of spaces.

So, we get this:

Corollary

For S a space there is an equivalence of higher categories:

S/S Fun(S , S)
StS

UnS

Note the similarity to the case of sets!

Nima Rasekh - UIUC A new Approach to Straightening 28 / 30



History
Quasi-Categories

Unstraightening Construction
Proof & Application

Why it might be true
What is it good for?

Cool Example

Let S = BG . Then we get

S/BG Fun(BG , S)
StBG

UnBG

BG as a higher category has one object

S/BG G − Spaces
StBG

UnBG

Unstraightening the one unique representable map gives us exactly
EG → BG .
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What is it good for?

Thank you!
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