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The goal of this talk is to introduce an abstract axiomatic framework for the
homotopy theory of spaces. After giving a quick motivation and definition we
move on to show how we can reproduce various results from classical algebraic
topology in this abstract setting.
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Blakers-Massey Theorem
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Where to go from here?

Set Theory and Elementary Toposes

A lot of classical mathematics is based on set theory. That necessitates a good
axiomatic framework for set theory. We can achieve this in several ways.

1. Logic
2. Category Theory

Here are examples of some conditions from both perspectives

Axiom | Logical | Categorical
Extensionality | f =g < f(z) = g(x) | Generated by the final object

Union X UY exists Finite Coproducts Exist

More concretely the precise way to characterize set theories via categories is
by defining an elementary topos, which is a category with certain representability
conditions [Jo03].



I am a homotopy theorist and like homotopical structures. For that reason
I like to find a similar foundational approach to spaces, which are the basic
building blocks of homotopy theory. As in the case of sets there are various
ways we can approach this question. My goal is to focus on the categorical
approach.

Elementary Higher Topos

In this section I give a definition for a category that can serve as a basis for the
homotopy theory of spaces. As we have entered the realm of homotopy theory
everything I say henceforth will automatically be “higher”, (co,1) or co. As
disclaimer, when I say higher category I am thinking of a complete Segal space
but everything also works for quasi-categories. However, I we will not require
any particular aspects of those models in this talk.

Definition 2.1. [Ral8a] An elementary higher topos € is a category £ which
satisfies following conditions:

1. It has finite limits and colimits.

2. It is locally Cartesian closed.

3. It has a subobject classifier 2.

4. Tt has sufficient universes U.

Definition 2.2. € is locally Cartesian closed if for every map f : x — y, the
pullback functor

*

E/Z/ <f7 8/1'

has a right adjoint f,.
Definition 2.3. There is a functor
Sub(—) : €7 — Set

that takes every object z to the isomorphism classes of subobjects Sub(x). A
subobject classifier Q is an object that classifies the functor Sub(—).

Definition 2.4. & has sufficient universes if there exists a chain of objects
{U"},; such that for every map f :y — x there exists a pullback square

y — Uf
r

r——— U”



Example 2.5. The category of spaces is an elementary higher topos.

1. Spaces have finite limits and colimits.
2. Spaces are locally Cartesian closed.

3. It has a subobject classifier 2 = {0,1} [Notice a mono map in spaces is a
map that is an equivalence on path-components].

4. Before we show spaces have sufficient universes, we need following conven-
tions. Fix a large cardinal k:

(a) A space X is k-small if |7, (X)| < K

(b) A map is k-small if the fiber is x-small.

(c) We denote the subcategory of k-small spaces by Spaces”
(d) Forgetful map U : Spaces, — Spaces from pointed spaces.

(e) (8paces”)®°" is the maximal subgroupoid.

Now for any map of spaces f : Y — X there exists a pullback square:

Y ——— (Spacesf)ore
r

f yeere

X —— (Spaces®)re
As any given map of spaces has k-small fibers for a large enough cardinal
K, this means spaces have sufficient universes.

Example 2.6. Let us give one explicit example of this. For a k-small space X
we have a pullback square:

X ~{(X,z):x € X} — (Spaces?)ce
r

*

< (Spaces™)core

The category of spaces is fascinating and has been the object of extensive
studies in algebraic topology. For the remainder of this talk we want to show
how various classical results from algebraic topology can be reproduced in this
very abstract setting.

Natural Number Objects

The first thing we can notice about the definition is that it lacks any infinite
axiom. Many classical construction requires us to be able to do some infinite
constructions. In the classical setting of sets, we get a notion of infinity via
natural number objects.



Definition 3.1. Let € be a topos. An object N along with two maps s : N —» N
and o : 1 — N is called a natural number object if for any other object X with
maps b: 1 — X, u: X — X the diagram below has a unique filling.

e

1
b

N— N

3! 3!

X —— X
Example 3.2. The actual natural numbers N with 0 € N and succ: N — N is
a natural number object in spaces.

We can use natural number objects in the classical setting of an elementary
topos to do various constructions which are inherently infinite without actually
assuming infinite limits or colimits exists. For example we can construct free
monoids.

However, not every elementary topos has a natural number object and so
we have to assume its existence (a counterexample is the category of finite
sets). In the axiomatic context this corresponds to the aziom of infinity. In an
elementary higher topos we can use the inherent homotopy theory to actually
prove the following.

Theorem 3.3. [Ral8c] Every elementary higher topos € has a natural number
object.

The idea of the proof is the following. We have finite limits and colimits.
Thus we can do the following. First we can take the coequalizer

id
11— 11— 5!
id

Then we can take the pullback square

st —— 1
r

1 — St

In the case of spaces the object Q2S! is exactly the loop space of the cir-
cle, which are just the integers Z. We can use this intuition to prove various
important results about Q5! such that

1. Q5! =08 [0S
2. QS! is a group object.
3 ...



Truncations

One classical construction in the category of spaces are truncation functors.

Definition 4.1. A space is X is n-truncated if 7 (X) is trivial for & > n. We
denote the subcategory of n-truncated spaces by 7,Spaces.

There is an adjunction

Tn
Spaces <‘73 TpSpaces
K3

The adjunction implies that 7,,X is a universal truncation. Traditionally,
we construct this truncation by a small object argument. We basically fill all
the higher sphere with balls until there is nothing left to fill. This clearly needs
lots of infinite colimits. However, we want to show that we can deduce a similar
result without any infinite colimits.

The trick is to use an idea from Cech covers. For a given space X we can
form following simplicial diagram

X:E:Xxxﬁg)(x)(xxgm

The colimit of this simplicial diagram is 7_1 X [Lu09] [Re05]. The problem is
that we cannot take colimits of simplicial diagrams (as we don’t have infinite
colimits).

Fortunately, there is a workaround. Egbert Rijke has shown that if we
replace the product by joins then we can simplify the diagram from a simplicial
diagram to a sequential one [Ril7]. We can repeat that idea in context of an
elementary higher topos.

Definition 4.2. An object X in & is n-truncated if for every other object Y
the mapping space map(Y, X) is n-truncated.

Definition 4.3. Let A and B be two objects in €. We define the join A x B as
the pushout

AxB — B

r

A— L AxB

Theorem 4.4. [Ra18d] For a given object A the sequential colimit of the se-
quential diagram

A Av A (AxA) s A

is the —1-truncation of A, 71 A.



Thus every elementary higher topos has a (—1)-truncation. However, this
process cannot be used for n-truncations. For that we need a different argument
and the key is to use induction. Again this idea is originally due to Rijke in
homotopy type theory [Ril7]. Instead of giving the general argument we will
focus on the case of spaces to make the argument more understandable.

Let us assume we know how to construct n-truncation 7, X of a space X.
How can we use it to construct 7,41 X? The space 7,41 X should be thought of
as the space which has the same points as X but where we n-truncate each loop
space 7,,(Q2, X ). How can make this into an actual mathematical argument?

So, assume we have a truncation functor
T : Spaces — T,Spaces
For every space X there is a map of spaces
Y : X — Fun(X, Spaces®™")

that takes a point x to the map of spaces Path(—,z) : X — Spaces that maps
a point y to the path space Path(y,z). This map is in fact an embedding of
spaces. Now using our truncation functor 7,, we get a composition

(Tn)s 0 Y =V : X = Fun(X, 7,8paces®"®)

Clearly, this map is usually NOT an embedding anymore. So what is the image
of X under the map ),,?7 As ) is an embedding it suffices to determine which
objects are identified via (7,).. For a functor F' : X — Spaces®”®, we have
(Tn)«(F)(x) = 7,(F (z)). Thus Y, (X) is the subspace of Fun(X, 7,Spaces®"®)
generated by the points 7, (Path(—, z)).

We can capture the argument in the following diagram

X—>Y Fun(X, Spaces®") ESIOLEN Fun(X, 1, (Spaces®®))

Tn+1 (X )

Thus, we can define the n 4+ 1-truncation by the image of the map Y, (X) in
Fun(X, 7,(Spaces®"®)).

The beauty of the argument is that it can be directly generalized to an
elementary higher topos. In that direction we have following results.

Theorem 4.5. [Ral8c] (Yoneda Lemma in an Elementary Higher Topos) Let
U be a universe that classifier the diagonal map A : X — X x X, meaning we
have a pullback square



X — U,

A

XxX — U

The adjunction of the bottom map Yx : X — UX is a mono map in &.
Theorem 4.6. [Ral8d] For every n > —2, there is an adjunction
Tn
e /

y Tn€
K2

Blakers-Massey Theorem

Now that we have been able to construct truncations we can ask ourselves other
classical questions from algebraic topology related to truncated and connected
maps. Here we look at one classical result, namely Blakers-Massey theorem.

Definition 5.1. An object f : Y — X is n-connected if for all n-truncated
maps Z — X the map

" :map(X, Z) — map¥, Z)

Theorem 5.2. (Classical Blakers-Massey Theorem) Let us assume we have a
pushout square such that f is m-connected and g is n-connected.

g9

Z ———Y

f k
r

X

Then, the gap map (f,g9) : Z — X xw Y is (m + n)-connected.

In a paper by Anel, Biedermann, Finster and Joyal show that every pre-
sentable elementary higher topos (there called higher topos) satisfies a very
general version of the Blakers-Massey theorem [ABFJ17]. I have shown that
the same proof (with minor modifications) holds in the setting of an elementary
higher topos.

Where do we go from here?

There are so many places we can go from here:



1. We have truncations and we have spheres, which means we have homotopy
groups. Thus we can now ask how homotopy groups of spheres in &
compare to homotopy groups of spheres in spaces.

2. In particular, Freudenthal suspension theorem and homotopy groups im-
plies that we have stabilizations and stable homotopy groups. Thus we
can now ask for comparison between the stabilization of an elementary
higher topos and spectra.

3. Moreover, given that in the classical setting we were able to use natural
number objects to construct free algebras, the next step would be to show
that we can construct free algebras in every elementary higher topos.
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