How Computers prove Theorems and why it Matters

Nima Rasekh

Universität Greifswald

18.12.2024

Where do Computers come from? Computers and Computation

What is a Computer?

In 1797 oder even in 1950 it would be a Person:

(b) Human computers (1950)

Where do Computers come from? Computers and Computation

What is a Computer?

In 1797 oder even in 1950 it would be a Person:

(b) Human computers (1950)

Starting from the 40s it slowly becomes an electronic device.

(a) ENIAC (1945)

Where do Computers come from? Computers and Computation

Computers in Science

(a) Harvard Computers (1890)

(b) Apollo Guidance Computer (1969)

Where do Computers come from? Computers and Computation

Computers in Science

(a) Harvard Computers (1890)

(b) Apollo Guidance Computer (1969)

(C) CASTEP (1990)

(d) AlphaFold (2018)

Where do Computers come from? Computers and Computation

Computers in Mathematics

Where do Computers come from? Computers and Computation

Computers in Mathematics

Something is missing: Proofs!

Computers have many applications:

- Computation
- 2 Conjecture
- **③** Proofs through checking finite cases

Something is missing: Proofs!

Computers have many applications:

- Computation
- 2 Conjecture
- **③** Proofs through checking finite cases

What is missing?

Proofs!

Questions:

- O Can computers prove things and how?
- ② Can computers automate proofs?
- O Can computers prove new theorems?

Computers and Proofs What does that mean for us and for Mathematics?

Why should Computers prove things?

There is more mathematics:

Number of math papers on arXiv https://info.arxiv.org/help/stats/2021_by_area/index.html

Losing oversight, but more suitable for ML algorithms!

- Intricate computations cannot be checked.
- Math is more complicated: we can make more mistakes.

2 Examples

Image: Homotopy Hypothesis: Voevodsky¹

- Published Proof by Voevodsky and Kapranov in 1991
- Counter example by Simpson in 1998
- No concrete mistake found until 2013

"A technical argument by a trusted author, which is hard to check and looks similar to arguments known to be correct, is hardly ever checked in detail."

Ondensed Mathematics: Scholze²

- Complicated proof, hard to check
- Motivated Liquid Tensor Experiment

"I learnt that it can now be possible to take a research paper and just start to explain lemma after lemma to a proof assistant, until you've formalized it all! I

think this is a landmark achievement."

https://www.ias.edu/ideas/2014/voevodsky-origins

https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/

How can a Computer proof something?

Mathematical	
statements	

translated to Type theory (syntax)

entered into computers

Programming code e.g. Lean, Coq, ...

Formally verified mathematics

Computers and Proofs What does that mean for us and for Mathematics?

How can a Computer proof something?

Mathematical
statements

translated to Type theory (syntax)

entered into

Programming code e.g. Lean, Coq, ...

Formally verified mathematics

Example

For all sentences p, q, r we have: $p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$

But is there Formalization of real Mathematics?

Here are some recent developments:

- **1** Number theory: Fermats Last Theorem, since 2024³
- Analysis: Carleson's Theorem, since 2024⁴
- S Algebra: Liquid Tensor Experiment, 2020 2022⁵
- Geometry: Sphere Eversion, 2020 2022⁶
- **5 Topology:** Homotopy group $\pi_4(S^3)$, 2016 2022⁷
- **Geometry:** Kepler conjecture, 2003 2015⁸

³https://github.com/ImperialCollegeLondon/FLT
4
https://github.com/fivandoorn/carleson
5
https://github.com/leanprover-community/lean-liquid
6
https://github.com/leanprover-community/sphere-eversion
7
https://github.com/agda/cubical/tree/master/Cubical/Homotopy/Group/Pi4S3
8
https://github.com/fivspeck/flvepeck

Where can this lead us?

- Journal Submission with Formalization⁹
- 2 Automatic Proofs via Al¹⁰
- (3) Applications in Teaching 11,12,13,14,15

What does that mean for me?

Here are some possible first steps:

- Stay updated.
 - Keep track of milestones: LTE¹⁶, AlphaProof¹⁷, ...
 - Formalization at (German) universities: Bonn¹⁸, Düsseldorf¹⁹
- 2 Try Lean.²⁰
- Sormalize couple first definitions, lemmas in your area of research.
- Integrate formalization into teaching (e.g. exercises).
- Is Formalize a major theorem.

If there are questions, please ask!

```
16
https://leanprover-community.github.io/blog/posts/ite-final/
17
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
18
https://florisvandoorn.com/
19
https://hu-adam.github.io/
20
https://adam.math.hhu.de/#/g/leanprover-community/nng4
```

Formalization in Lean

Demonstration