Fibrations of (∞, n) -Categories

Nima Rasekh

Ecole Polytechnique Fédérale de Lausanne

More Information:

- ArXiv:
 - ightharpoonup Yoneda lemma for \mathcal{D} -simplicial spaces
 - arXiv:2108.06168.
- Academic Website:

https://www.epfl.ch/labs/hessbellwald — lab/members/nimarasekh/

► Email: nima.rasekh@epfl.ch

Functors vs. Fibrations

$$\operatorname{Fun}(\mathcal{C},\operatorname{Set}) \xrightarrow{\simeq} \operatorname{op} \operatorname{Groth}_{\mathcal{C}}$$

$$F \vdash \longrightarrow \coprod_{c \in \mathsf{Obj}_{\mathcal{C}}} F(c)$$

$$p^{-1}(c) \leftarrow p$$

Examples and Yoneda

- ▶ Constant functors $\{A\}: \mathcal{C} \to \mathcal{S}$ et correspond to projections $A \times \mathcal{C} \to \mathcal{C}$.
- ▶ Representables $\operatorname{Hom}(c, -) : \mathcal{C} \to \operatorname{\mathbb{S}et}$ correspond to under-categories $\mathcal{C}_{c'} \to \mathcal{C}$.

Examples and Yoneda

- ▶ Constant functors $\{A\}: \mathcal{C} \to \mathcal{S}$ et correspond to projections $A \times \mathcal{C} \to \mathcal{C}$.
- ▶ Representables $\operatorname{Hom}(c, -) : \mathcal{C} \to \operatorname{Set}$ correspond to under-categories $\mathcal{C}_{c'} \to \mathcal{C}$.

We also have a Yoneda lemma.

Lemma

For a Grothendieck opfibration $\mathbb{G} \to \mathbb{C}$ and object c there is an isomorphism

$$\operatorname{Fun}_{\mathcal{C}}(\mathcal{C}_{c/},\mathcal{G}) \cong \operatorname{\mathcal{F}ib}_{c}\mathcal{G}$$

On to $(\infty, 1)$ -Categories

- \triangleright Categories generalize to $(\infty, 1)$ -categories!
- ▶ For an $(\infty, 1)$ -category \mathcal{C} , we often cannot define functors, such as

$$\operatorname{Map}_{\mathcal{C}}(c, -) : \mathcal{C} \to \mathcal{S}$$

as composition is defined weakly.

► We *need* the fibrational approach to study functors.

coCartesian Fibrations of $(\infty, 1)$ -Categories

The fibrational approach is obtained via *coCartesian* (*left*) *fibrations*. For a given $(\infty, 1)$ -category $\mathbb C$ we have equivalences

$$coCart_{/C} \simeq Fun(C, Cat_{\infty})$$

$$\mathcal{L}\mathfrak{F}ib_{/\mathcal{C}} \simeq \operatorname{Fun}(\mathcal{C}, \mathcal{S})$$

coCartesian Fibrations of $(\infty, 1)$ -Categories

The fibrational approach is obtained via *coCartesian* (*left*) *fibrations*. For a given $(\infty, 1)$ -category $\mathbb C$ we have equivalences

$$coCart_{/C} \simeq Fun(C, Cat_{\infty})$$

$$\mathcal{L}\mathfrak{F}ib_{/\mathcal{C}} \simeq \operatorname{Fun}(\mathcal{C}, \mathcal{S})$$

Studied in different ways by Lurie, Heuts-Moerdjik, Stevenson, Riehl-Verity, deBrito, Ayala-Francis,

coCartesian Fibrations of $(\infty, 1)$ -Categories

The fibrational approach is obtained via *coCartesian* (*left*) *fibrations*. For a given $(\infty, 1)$ -category $\mathbb C$ we have equivalences

$$coCart_{C} \simeq Fun(C, Cat_{\infty})$$

$$\mathcal{L}\mathcal{F}ib_{/\mathcal{C}} \simeq Fun(\mathcal{C}, \mathcal{S})$$

Studied in different ways by Lurie, Heuts-Moerdjik, Stevenson, Riehl-Verity, deBrito, Ayala-Francis,

Similar to 1-categories, representable functors $\operatorname{Map}_{\mathbb{C}}(c,-):\mathbb{C}\to\mathbb{S}$ are obtained via $\mathbb{C}_{c'}\to\mathbb{C}$.

Fibrations are Useful!

We use *coCartesian fibrations* to study many ∞-categorical concepts:

- ► Limits, colimits, adjunctions
- ► Symmetric monoidal ∞-categories
- ▶ ∞-operads
- **...**

The (∞, n) -Categorical World

 $(\infty, 1)$ -categories have been generalized to several models of (∞, n) -categories

- ► *n*-fold complete Segal spaces
- \triangleright Θ_n -spaces
- ► *n*-complicial sets
- ► *n*-comical sets
- ▶ ...

n-fold Complete Segal Spaces

We introduce Cartesian fibrations of n-fold complete Segal spaces.

n-fold Complete Segal Spaces

We introduce Cartesian fibrations of n-fold complete Segal spaces.

An *n*-fold complete Segal space $\mathcal{C}: (\Delta^{op})^n \to \mathcal{S}$ satisfying

- ► Segal Condition: for composition
- ► Completeness Condition: for equivalences
- ▶ **Discreteness Condition:** to avoid additional morphisms

It comes with a model structure that is known to be equivalent to Θ_n -spaces (Bergner-Rezk) and for n=2 to all other models of $(\infty,2)$ -categories.

Let \mathcal{C} be an n+1-fold complete Segal space. There is a notion of (∞, n) -coCartesian fibration with the following properties:

Let \mathcal{C} be an n+1-fold complete Segal space. There is a notion of (∞, n) -coCartesian fibration with the following properties:

1. **Model Structure:** It is a fibrant object in a simplicial left proper combinatorial model structure over \mathcal{C} .

Let \mathcal{C} be an n+1-fold complete Segal space. There is a notion of (∞, n) -coCartesian fibration with the following properties:

- 1. **Model Structure:** It is a fibrant object in a simplicial left proper combinatorial model structure over \mathcal{C} .
- 2. **Yoneda Lemma:** For an object c in C, there is a *representable* (∞, n) -coCartesian fibration $C_{c/} \to C$ and for every (∞, n) -coCartesian fibration $\mathcal{L} \to C$ and object c in C we have an equivalence of (∞, n) -categories

$$\operatorname{Fun}_{\mathcal{C}}(\mathcal{C}_{c},\mathcal{L}) \cong \operatorname{Fib}_{c}\mathcal{L}.$$

Let \mathcal{C} be an n+1-fold complete Segal space. There is a notion of (∞, n) -coCartesian fibration with the following properties:

- 1. **Model Structure:** It is a fibrant object in a simplicial left proper combinatorial model structure over \mathfrak{C} .
- 2. **Yoneda Lemma:** For an object c in C, there is a *representable* (∞, n) -coCartesian fibration $C_{c/} \to C$ and for every (∞, n) -coCartesian fibration $\mathcal{L} \to C$ and object c in C we have an equivalence of (∞, n) -categories

$$\operatorname{Fun}_{\mathcal{C}}(\mathcal{C}_{c/},\mathcal{L}) \cong \operatorname{\mathcal{F}ib}_{c}\mathcal{L}.$$

3. **Dwyer-Kan Equivalence:** A map of (∞, n) -coCartesian fibrations $\mathcal{L} \to \mathcal{L}'$ is an equivalence if and only if it is a Dwyer-Kan equivalence of $(\infty, n+1)$ -categories.

4. **Invariance**: The model structure, and hence (∞, n) -coCartesian fibrations are invariant under equivalences of n + 1-fold complete Segal spaces $\mathcal{C} \to \mathcal{D}$.

- 4. **Invariance**: The model structure, and hence (∞, n) -coCartesian fibrations are invariant under equivalences of n + 1-fold complete Segal spaces $\mathcal{C} \to \mathcal{D}$.
- 5. Grothendieck Construction: There is an equivalence

$$(\operatorname{coCart}_{(\infty,n)})_{/\mathcal{C}} \simeq \operatorname{Fun}(\mathcal{C}, \operatorname{Cat}_{(\infty,n)})$$

- 4. **Invariance**: The model structure, and hence (∞, n) -coCartesian fibrations are invariant under equivalences of n + 1-fold complete Segal spaces $\mathcal{C} \to \mathcal{D}$.
- 5. Grothendieck Construction: There is an equivalence

$$(\operatorname{coCart}_{(\infty,n)})_{/\mathbb{C}} \simeq \operatorname{Fun}(\mathbb{C}, \operatorname{Cat}_{(\infty,n)})$$

6. **Universality and Univalence:** There is a universal (∞, n) -coCartesian fibration that is univalent.

Generalities and the Future

Generalities:

- ▶ All these result hold for many other models of (∞, n) -Categories, such as **complete Segal spaces enriched over** Θ_n -spaces.
- ► They also hold for more general fibrations, such as fibrations **fibered in** *n***-fold Segal spaces**.

Generalities and the Future

Generalities:

- ▶ All these result hold for many other models of (∞, n) -Categories, such as complete Segal spaces enriched over Θ_n -spaces.
- ► They also hold for more general fibrations, such as fibrations **fibered in** *n***-fold Segal spaces**.

Future:

- Study **limits** of $(\infty, 2)$ -categories via fibrations of 2-fold complete Segal spaces.
- ▶ Study $(\infty, 2)$ -topos theory via representable $(\infty, 2)$ -Cartesian fibrations.

Università di **Genova**