
An Example of an Elementary (∞, 1)-Topos that

is not a Grothendieck (∞, 1)-Topos

Nima Rasekh

January 7, 2020

In this talk we introduce a new construction, the filter quotient, and show
how the filter quotient of every elementary (∞, 1)-topos is again an elementary
(∞, 1)-topos. Then we show how in specific instances this gives us ways to
contruct elementary (∞, 1)-toposes that are not Grothendieck (∞, 1)-toposes.

1. A Theory of Elementary (∞, 1)-toposes.

2. The Filter Quotient of an Elementary Topos.

3. The Filter Quotient of an Elementary (∞, 1)-Topos.

4. Examples of Elementary (∞, 1)-toposes that is not Grothendieck (∞, 1)-
toposes.

5. Filter Quotient and Truncations.

6. Future Directions

A Theory of Elementary (∞, 1)-Toposes

Elementary topos theory studies logical aspects in category. Roughly speaking
an elementary topos is a category that behaves “like the category of sets”.
It has been developed quite extensively by people such as Lawvere, Tierney,
Johnstone[Jo03], ... .

My (and some other peoples) project is to develop an (∞, 1)-categorical
analogue of elementary topos theory, which can be captured under the term
elementary (∞, 1)-topos. Following the same logic an elementary (∞, 1)-topos
should be an (∞, 1)-category that behaves “like the category of spaces”. The
current plan is to develop elementary (∞, 1)-topos theory in theory and appli-
cation.

Remark 1.1. The word (∞, 1)-category is a term generally used when talking
about categories with a notion of equivalence. There are various ways to make
this notion precise, which are called “models of (∞, 1)-categories”. Whenever
there is any need to be precise we will refer to the precise model we are using.
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Here is the definition we will use throughout.

Definition 1.2. An elementary (∞, 1)-topos E is an (∞, 1)-category such that

1. It has finite limits and colimits.

2. It is locally Cartesian closed.

3. It has a subobject classifier.

4. It has sufficient universes.

Definition 1.3. A subobject classifier is an object Ω and natural isomorphisms

Sub(X) ∼= Hom(X,Ω).

Definition 1.4. A universe is the data of a class of maps S, an object U and
natural equivalences of spaces

((E/X)S)core 'MapE(X,U)

Definition 1.5. E has sufficient universes if the collection ((E/X)S)core is jointly
surjective on (E/X)core.

Remark 1.6. We often make assumptions on U such that the category (E/X) is
closed under certain constructions such as limits, colimits, Π-types, ... .

Let us the give the most important example of such an elementary (∞, 1)-
topos.

Example 1.7. Let Kan be the category of Kan complexes. We want to confirm
it satisfies the four axioms:

1. It has finite limits and colimits.

2. It is locally Cartesian closed.

3. The subobject classifier is Ω = {0, 1}. The key observation is that a map
in Kan is mono if and only if it is an inclusion of path components i.e. a
local weak equivalence.

4. We now need to show we have enough universes. Let κ be a large enough
cardinal. Let Kanκ be the category of κ-small Kan complexes. Let
(Kanκ)core be the subcategory with morphisms weak equivalences. Then
we can form a Kan complex N((Kanκ)core) in which the n-cells roughly
correspond to a choice of n-composable weak equivalences. Note this Kan
complex is certainly not κ-small. Moreover, there is an equivalence of Kan
complexes

N(((Kan/X)κ)core) 'Map(X,N((Kanκ)core))

where the left hand side is κ-small maps over X. For example, let X = ∆0

then we have

N(Kanκ)core 'Map(∆0, N((Kanκ)core))
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We can think of an elementary (∞, 1)-topos as a common generalization of
a Grothendieck (∞, 1)-topos and an elementary topos.

Theorem 1.8. Every Grothendieck (∞, 1)-topos (in the sense of Lurie) is an
elementary (∞, 1)-topos.

Theorem 1.9. The subcategory of 0-truncated objects τ0E is an elementary
topos. We call τ0E the underlying elementary topos.

There are some things we can already prove about such an elementary (∞, 1)-
topos.

Theorem 1.10. Every elementary (∞, 1)-topos has a natural number object.

Remark 1.11. There are three different ways to define a natural number object,
Lawvere, Freyd and Peano, and they all coincide.

Theorem 1.12. For every natural number n : N there is a truncation functor

τn : E→ τnE

The key about those two previous results is that they are pretty straightfor-
ward if E has infinite colimits, but are highly non-trivial if we only have finite
limits and colimits. Moreover, the previous holds for every natural number,
which gains its full strength when we have a non-standard natural number ob-
ject, which is impossible if we have infinite colimits. So, in particular, the results
are not very interesting when we are working with Grothendieck (∞, 1)-toposes,
as the natural number object is just

∐
N 1 and truncation follows from localizing

at certain spheres.

This means we should care about finding examples of elementary (∞, 1)-
toposes that aren’t Grothendieck (∞, 1)-toposes. This has proven to be quite
difficult.

Example 1.13 ([Lo19]). The category of finite sets is an elementary 1-topos,
which does not have have infinite colimits. Thus we would hope that some
analogous notion of finite spaces gives us an elementary (∞, 1)-topos. However,
this is not correct because any notion of finite spaces lacks universes.

The way to fix things is to take a suitable notion of large cardinal, a 1-
inaccessible cardinal. And show small spaces form an elementary (∞, 1)-topos
that is not Grothendieck. This has been done by Lo Monaco in recent work.
Thus this method does not give us an elementary (∞, 1)-topos without infinite
colimits.

The goal of this talk is to construct an elementary (∞, 1)-topos that isn’t a
Grothendieck (∞, 1)-topos.

The key observation is following proposition:

Proposition 1.14. Let E be an elementary (∞, 1)-topos such that its underlying
topos τ0E is not a Grothendieck topos. Then E is not a Grothendieck (∞, 1)-
topos.
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The proof is just the fact that the underlying elementary topos of a Grothen-
dieck (∞, 1)-topos is a Grothendieck 1-topos.

It is not known if the opposite statement holds.

The Filter Construction of an Elementary Topos

The goal is to give a construction that helps us build new toposes. The con-
struction involves a notion of filter.

Definition 2.1. Let (P,≤) be a partially ordered set. A filter F is a subset of
P that satisfies following conditions.

1. F 6= ∅.

2. F is downward directed, meaning that for any two object x, y ∈ F there
exists z ∈ F such that z ≤ x and z ≤ y.

3. F is upward closed, meaning that if x ≤ y and x ∈ F , then y ∈ F .

Example 2.2. For any poset P and object x the subset {y ∈ P : x ≤ y} is a
filter. We call such filter a principal filter.

Definition 2.3. A maximal filter F ( P is called an ultrafilter.

Remark 2.4. We will only care about filters on the Heyting algebra Sub(1),
which has maximal object and meets and thus for us a filter is any subset that
contains the maximal elements, is closed under meets and is upward closed.

Let E be an elementary 1-topos. Then Sub(1) is a poset (and in fact a
Heyting algebra). Let Φ be a filter on the poset Sub(1). We want to define a
new topos EΦ as follows.

1. It has objects the same objects as E.

2. For two objects A,B, the hom set HomEΦ(A,B), is the defined as the set

HomEΦ
(A,B) = {f : A× U → B : U ∈ Φ}/ ∼

where the equivalence relation is defined as follows: f ∼ g if there is a
commutative square

A×W A× U

A× V B

f

g

So, we have the same set of objects, but morphisms are partially defined
maps, up to morphisms that are equal “from some point on”. We have following
basic observation about this construction.
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Example 2.5 ([Jo03, Example A2.1.13]). The filter quotient construction EΦ

is an elementary topos.

Remark 2.6. The main reason we care about this construction is that Grothen-
dieck 1-toposes are not closed under filter quotients.

We want an analogous construction for elementary (∞, 1)-topos. The pro-
blem is that morphisms of (∞, 1)-categories are defined up to homotopy and
thus special care is required.

Filter Quotient of an Elementary (∞, 1)-Topos

Up until now we have been very vague about what an (∞, 1)-category is. Ho-
wever, in order to be able to give a correct construction of a filter quotient we
need to be more precise.

Definition 3.1. A Kan enriched category is a category enriched over the cate-
gory of Kan complexes.

Theorem 3.2 ([Be07]). Kan enriched categories are a model of (∞, 1)-categories.

We can now state the main theorem.

Theorem 3.3. Let E be elementary Kan enriched topos and Φ a filter in Sub(1).
Then we can construct a new elementary Kan enriched topos EΦ.

Proof. The idea of the proof is as follows. A Kan enriched category E is a
simplicial object

E• : ∆op → Cat

thus we have level-wise 1-categories En, which all have the same class of objects.
We can thus apply the filter quotient on the category En. It is not difficult to
see that the construction is functorial and thus the we get a new Kan enriched
category EΦ (here we are using the technical fact that the filtered colimit of Kan
complexes is again a Kan complex).

We want to show that this Kan enriched category EΦ is an elementary Kan
enriched topos. The key realization is that all the objects that satisfy the
universal property in E still satisfy the same universal property in EΦ.

In particular, the final object in EΦ is just the final object in E. Moreover, if
we take two maps f : A×U → C and g : B × V → C, then they are equivalent
to the maps fπ1 : (A× U)× V → C and gπ1 : (B × V )× U → C the pullback
in EΦ is just the pullback of in E, A×C B × U × V .

A careful analysis of subobjects in EΦ proves that Ω is stil the subobject
classifier (here we use the fact that a map is mono in EΦ if and only if it is
equivalent to any map that was mono in E i.e. mono maps are the “eventually
mono maps”). Finally, the same universes U in E will be universes in EΦ.
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Remark 3.4. Notice, the argument about limits, colimits and subobject classifier
is quite straightforward, but the argument about universes is a little bit involved
and requires us to switch between various models of (∞, 1)-categories.

Examples of Elementary (∞, 1)-Toposes that is
not Grothendieck (∞, 1)-Toposes

We want to use the filter quotient to build some interesting elementary (∞, 1)-
toposes. For that we need an important observation.

Theorem 4.1. Let E be an elementary (∞, 1)-topos and Φ a filter. Then we
have an equivalence of 1-categories

τ0(EΦ) ' (τ0(E))Φ

Remark 4.2. This equivalence is not an isomorphisms. In particular objects in
τ0(EΦ) are the “eventually 0-truncated objects”, whereas objects in τ0(E))Φ are
globally 0-truncated.

The upshot is: All we need to do is start with an elementary (∞, 1)-topos E

and a filter Φ such that (τ0(E))Φ is not a Grothendieck topos. Here we can use
our vast knowledge about elementary 1-toposes.

Example 4.3. Let Kan be the Kan enriched category of Kan complexes. This is
an example of an elementary (∞, 1)-topos with underlying elementary topos Set.
Let S be any set. Then the category KanS of S-indexed Kan complexes is also
an elementary (∞, 1)-topos with underlying elementary topos SetS . Moreover,
the final object in KanS is just (1)s∈S . Thus, Sub(1) = P (S), the set of subsets
of S and so a filter on KanS is just a filter on the power set P (S). For any
such filter we get an elementary (∞, 1)-topos (KanS)Φ such that the underlying
elementary topos is (SetS)Φ.

Pick a filter Φ on P (S) such that the elementary topos (SetS)Φ is not a
Grothendieck topos. Then (KanS)Φ is also an elementary (∞, 1)-topos that is
not a Grothendieck (∞, 1)-topos.

Here is one example: Let S be infinite and Φ be a non-principal filter.
Then (SetS)Φ is not a Grothendieck topos [AJ82]. Thus (KanS)Φ is also not a
Grothendieck (∞, 1)-topos.

The Filter Quotient and Truncations

Let us give one concrete example of the filter construction and its effects on
truncation functors.

Example 5.1. Let C be an (∞, 1)-category and n a natural number. An object
X in C is n-truncated if for every other object Y , the mapping space Map(Y,X)
is an n-truncated Kan complex.
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The goal is to show how we can expand this definition with non-standard
natural number objects.

Example 5.2. This is motivated by [Jo03, D5.1.7]. Let N be the set of natural
numbers, Φ be the filter of cofinite sets. This filter is clearly non-principal and
so (KanN)Φ is not a Grothendieck (∞, 1)-topos. We can give a more explicit
description of this category:

It’s objects are sequences of Kan complexes (Xn)n∈N. Morphisms are maps
of sequences

(fn)n≥N : (Xn)n≥N → (Yn)n≥N

such that f ∼ g if and only if fn = gn for n large enough.

Recall a natural number object N is the data

1
o−−→ N s−−→ N

that is initial among any such data (X, b, u).

The natural number object in (KanN)Φ is the level-wise Kan complex (N)n∈N.
A natural number is a level-wise choice of natural number, which is exactly a
sequence [(an)n∈N], where two sequences are in the same class if they agree
eventually.

The standard natural numbers n correspond to the class of sequences that
converge to n. But then we also have non-standard natural numbers, such as
the sequence

diagn = n

that are not in the image of the standard natural numbers. To see this, no-
tice that diagn intersects with each standard natural number only at level n,
which means each intersection is eventually trivial, which means it is trivial in
(KanN)Φ. Thus the natural number object in (KanN)Φ has many non-standard
natural numbers.

Whenever we have a natural number object and universes, we can give an
internal definition of truncation, where the truncation levels correspond to the
natural numbers in our natural number object. If the natural number object
is standard, then we get nothing new. However, non-standard natural numbers
give us truncations levels, which have no external realization.

We can see this in our example. If the sequence [(an)n∈N] is eventually stable
(and equal to m) then an object (Kn)n∈N is [(an)n∈N]-truncated if and only if
the mapping space

Map((Ln)n∈N, (Kn)n∈N)

is an n-truncated space for any other object (Ln)n∈N. But if [(an)n∈N] does not
stabilize (for example if it is [(diagn)n∈N]), then the mapping space does not
seem to have any external manifestation.
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Future Directions

Where do we go from here?

1. If Φ is a non-principal ultrafilter on P (S) then the elementary topos
(SetS)Φ has many similarities to the category of sets. In particular, it
is generated by the final object and is Boolean. Yet it is not equivalent to
the category of sets.

The question now becomes how much this generalizes to (KanS)Φ and
how it compares to Kan complexes.

2. We already know that every Grothendieck (∞, 1)-topos is a model for
homotopy type theory [Sh19]. But we don’t have any non-Grothendieck
topos examples yet and so one interesting question is whether this filter
quotient construction gives us models for homotopy type theory.
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